
IfhIII
st.pölten

Information Security

Signal Intrusion Detection for Remote Keyless

Entry Systems

Diplomarbeit

zur Erlangung des akademischen Grades

Master of Science (MSc)

eingereicht von

Simon D. Hasler

is161514

im Rahmen des

Studienganges Information Security an der Fachhochschule St. Pölten

Betreuung

Betreuer/in: Dipl.-Ing. Dr. Henri Ruotsalainen

St. Pölten, May 30, 2018

(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

*

Fachhochschule St. Pölten GmbH, Matthias Corvinus-Straße 15, A-3100 St. Pölten,T: +43 (2742) 313 228, F: +43 (2742) 313 228-339, E:office@fhstp.ac.at, I:www.fhstp.ac.at

Ehrenwörtliche Erklärung

Ich versichere, dass

• ich diese Diplomarbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel

nicht benutzt und mich sonst keiner unerlaubten Hilfe bedient habe.

• ich dieses Diplomarbeitsthema bisher weder im Inland noch im Ausland einem Begutachter/einer

Begutachterin zur Beurteilung oder in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

• diese Arbeit mit der vom Begutachter/von der Begutachterin beurteilten Arbeit übereinstimmt.

Der Studierende/Absolvent räumt der FH St. Pölten das Recht ein, die Diplomarbeit für Lehre- und

Forschungstätigkeiten zu verwenden und damit zu werben (z.B. bei der Projektevernissage, in Publika-

tionen, auf der Homepage), wobei der Absolvent als Urheber zu nennen ist. Jegliche kommerzielle

Verwertung/Nutzung bedarf einer weiteren Vereinbarung zwischen dem Studierenden/Absolventen und

der FH St. Pölten.

Ort, Datum Unterschrift

Simon D. Hasler ii

Acknowledgments

While it was my task to plan and conduct this research project, I could never have achieved the final

result without the support and encouragement of a number of people inside and outside of academia,

some of whom I would like to show my appreciation by making mention of their names.

First, I would like to give my thanks to Dipl.-Ing. Dr. Henri Ruotsalainen, my project supervisor, for

always helping me out with input that would steer me in the right direction whenever I seemed to get stuck

on some technical detail during my experiments. Also for his patience, the well-working communication

over the entire phase of this research project, and for lending me a piece of equipment that I could not

have done without.

I would also like to thank Dipl.-Ing. Christian Hinterdorfer, who by the time of this writing is my superior

and the head of the IT department of the company I am working for, for giving his permission to try out

my completed proof-of-concept on one of the company-owned nVidia Jetson TX2 modules, which I felt

was adding great value to my diploma thesis.

As the successful completion of this research work marks the end of my IT Security and Information

Security studies, this seems like the perfect opportunity to express my gratitude to my parents, Dipl.-

Päd. Elisabeth and Dipl.-Ing. Wolfgang Hasler, my family, and everybody else who contributed in

getting me to this point. It has been a tough road at times but the countless moments of joy, surprise, and

success easily made up for all the difficulties experienced, and all the fond memories of the great people

I had the pleasure of meeting during my university years in St. Pölten will always remain.

Simon D. Hasler iii

Abstract

Recent years have brought to light a surprising number of hacking techniques that circumvent the security

measures implemented in automobiles, allowing car thieves to remotely open vehicles without the use

of the legit keyfob. White-hat hackers and security researchers have revealed how these kinds of attacks

are possible and what kind of hardware and software is used. In this research work, I review the RollJam

attack, which aims at replaying captured signals after preventing the car from receiving them by jamming

the receiver frequency during legit transmissions. I show that this attack scheme can be reproduced to

remotely unlock a 2008 model VW Group vehicle with a selection of low-cost transmitter devices and

open-source software. After visualizing captured signals from different transmitters and analyzing their

unique characteristics, I proceed by demonstrating that a number of features can be extracted that allow

to distinguish between signals based on their origin. Based on my findings, I present a technique that

applies two different machine learning algorithms for the classification of data points on a pre-built

dataset, and subsequently use it to create a proof-of-concept for a Signal Intrusion Detection System

capable of classifying unknown signals based on known signal data. I show how both machine learning

algorithms perform in various use cases on the provided signal data in terms of resource utilization and

accuracy, and reveal where their individual strength and weaknesses lie. Lastly, I introduce the nVidia

Jetson TX2 module that I chose as the hardware platform for the tested proof-of-concept and explain

why it is especially well-suited for AI computing tasks in embedded environments such as automobiles.

Simon D. Hasler iv

Contents

1. Introduction 1

2. Research Questions 3

3. Background 4

3.1. Rolling Codes and the RollJam Attack in Theory . 4

3.1.1. KeeLoq Rolling Codes . 4

3.1.2. The RollJam Attack . 5

3.2. Signal Capture and Replay in Practice . 6

3.2.1. RTL2832U based SDR Dongle . 7

3.2.2. Rad1o Badge . 9

3.2.3. YARD Stick One . 13

3.2.4. Raspberry Pi 3 Model B . 16

4. Research Methodology 18

4.1. Feature Extraction for Signal Classification . 18

4.1.1. Script for Replay Attack: replay.py . 19

4.1.2. Script for Signal Plotting and Feature Extraction: plot_diffs.py 19

4.2. IDS Approach - Machine Learning for Label Prediction 30

4.2.1. Script for Data Accumulation: build_dataset.py 30

4.2.2. Script for k-nearest Neighbors Algorithm: kNN_prediction.py 35

4.2.3. Script for Support Vector Machine Algorithm: svm_prediction.py 38

4.3. Implementation of the Signal IDS on a nVidia Jetson TX2 Module 38

4.3.1. Script for Signal Intrusion Detection: signal_ids.py 38

4.3.2. Hardware Setup and Final Implementation . 42

5. Results and Findings 47

5.1. Prediction Accuracy and Performance . 47

Simon D. Hasler v

Contents

5.2. Limitations to the Machine Learning Approach . 53

6. Conclusion and Future Work 55

6.1. Conclusion . 55

6.2. Future Work . 56

6.2.1. Machine Learning for Image Recognition with TensorFlow 56

6.2.2. GPU Accelerated Computing with Python . 57

A. Python Source Code 58

A.1. Scripts for Capture, Replay, and Plotting . 58

A.1.1. replay.py . 58

A.1.2. plot_diffs.py . 60

A.2. Script for Data Accumulation . 66

A.2.1. build_dataset.py . 66

A.3. Scripts for Classification . 70

A.3.1. kNN_prediction.py . 70

A.3.2. svm_prediction.py . 73

A.4. Script for the Signal Intrusion Detection System . 76

A.4.1. signal_ids.py . 76

A.5. IPython and Terminal Commands . 79

A.5.1. Commands for Shuffling the Rows of the Dataset 79

A.5.2. Commands for Installation of the Python Requirements on L4T 28.2 80

List of Figures 82

References 86

Simon D. Hasler vi

1. Introduction

The more cars become computerized and rely on electronical rather than mechanical security measures

to prevent theft, the more it becomes obvious how incapable or neglecting car manufacturers seem to

have been for many years of implementing strong and robust cryptography into their products. Research

publications of recent years and the work of hackers and hobbyists alike have revealed a number of

astonishingly simple hacks that circumvent whatever cryptography is implemented in vehicles altogether.

In 2016, at the 25th USENIX Security Symposium, Garcia et al. presented a wireless attack [1] on the

remote keyless entry (RKE) system of Volkswagen Group cars that affects approximately a 100 million

vehicles built since 1995 worldwide. While this attack is based on reverse engineering and the recovery

of the used cryptographic algorithms, the paper subsequently describes another attack that focuses on the

HITAG 2 rolling code scheme, showing that only a few minutes of computation on a laptop are sufficient

to create a fully functional clone of the remote control of the car. This second attack affects another

couple of million cars by manufacturers such as Alfa Romeo, Citroën, Fiat, Ford, Mitsubishi, Nissan,

Opel, Peugeot and Renault. NXP, the semiconductor company that sells the chips that use this vulnerable,

out-of-date crypto system states that it has been recommending customers upgrade to newer schemes for

years [2].

In [3], which was published in 2012, Verdult et al. present three practical attacks on the HITAG 2

transponder used in electronic vehicle immobilizer systems, which are supposed to prevent the engine

from starting without the remote control containing the transponder chip being present and in close

proximity to the reader unit that is usually placed somewhere in the dashboard of the car. The security

researchers describe how they were able to start the engine of more then 20 vehicles of different makes

and models by recovering the used secret key using only wireless communication.

In 2011, Francillon et al. have been able to use relay attacks on passive keyless entry and start systems

(PKES) [4] to successfully transmit data between a car and the belonging keyfob over physical distances

as far as 50 meters, non line-of sight. This allowed them to open and start the attacked vehicle simply by

placing one malicious device in close proximity to the car, and another close to the keyfob. According

to their findings, 10 recent car models of 8 manufacturers are vulnerable to certain variations of replay

attacks due to the car only verifying whether it can communicate with the keyfob, not if it actually is in

Simon D. Hasler 1

1. Introduction

its physical proximity.

Not only are the computational efforts and the execution time of these attacks considerably lower than

what might be expected, there is also another, even far more simple way of opening a car without being

in possession of the belonging keyfob, requiring no expensive equipment, no knowledge about cryptog-

raphy at all, and only a minimal technical understanding of digital signals. At DEF CON 23, which

took place in Las Vegas in 2015, hacker and hobbyist Samy Kamkar presented a new attack scheme

that he named RollJam [5, 6]. It basically allowed him to capture the unlock signal sent by a keyfob

while at the same time jamming the frequency so that the car would not receive and, after unlocking,

invalidate the signal, thus making it possible to later resend it and successfully open the car [7]. On CBC

News, Kamkar demonstrated this attack on a Cadillac luxury SUV [8] using nothing more than a small

self-made device that was powered only by a low-cost Teensy 3.1 micro-controller.

In this research work I demonstrate that it is both feasible and practical to reproduce the RollJam attack

by utilizing easily purchasable low-cost hardware. In Section 4.1 I further analyze the characteristics

exhibited by captured signals of various origins and explain how carefully selected features can be ex-

tracted to numerically represent the individual signals based on previously obtained reference data. In

Section 4.2 I present a method for building a dataset by accumulating a sufficiently large number of cap-

tured signals, and continue by showing how the k-nearest Neighbors and the Support Vector Classifier

machine learning algorithms can be applied to that dataset. A complete and tested proof-of-concept for

a Signal Intrusion Detection System capable of determining whether a received signal originated from

the legit keyfob is presented in Section 4.3. Section 5.1 and Section 5.2 explain the findings made during

my machine learning tests and also describe various limitations to this method. Section 6.1 summarizes

the methodology applied in this research work and the results obtained, and Section 6.2 concludes this

research work by proposing an entirely different yet equally possible machine learning approach to the

same research problem, as well as the option to utilize the CUDA capability of the hardware platform I

selected for significant performance gains to my approach in future work.

Simon D. Hasler 2

2. Research Questions

Considering the wide array of radio based attacks against automobiles, I want to demonstrate that it is in

fact possible to implement an intrusion detection system capable of recognizing malicious signal sources

by detecting differences in signals received on the frequency of the legit keyfob. To this end the following

questions need to be answered:

a) Is it at all possible to find differences in captured and replayed signals depending on which device

is used as a transmitter, and if so, what characteristics do these differences exhibit?

b) What could a proof-of-concept for a Signal Intrusion Detection System (Signal IDS) look like in

theory, which hardware and software could be used, and how could it actually be implemented?

c) To what degree is it possible to automate such a Signal IDS so that it is not overly error-prone due

to heavy user interaction?

Simon D. Hasler 3

3. Background

This chapter introduces the concept of rolling codes in remote keyless entry systems and presents a

capture and replay attack aimed at circumventing said concept. Furthermore, a selection of receiving

and transmitting devices is introduced, all of which have been evaluated for the purpose of this research

work. For each device a brief technical overview is given, as well as a description on how it may be used

in malicious activities regarding signal capture and replay.

3.1. Rolling Codes and the RollJam Attack in Theory

3.1.1. KeeLoq Rolling Codes

Usually, modern vehicles have a rolling code scheme implemented in their keyless entry systems, which

in most cases is based on the KeeLoq1 algorithm from MICROCHIP and is supposed to prevent replay

attacks. Such attacks would occur if an attacker could simply capture the unlock signal sent by the legit

keyfob and replay it at any time of their choosing.

Both the transmitting device, i.e., the keyfob, and the receiver inside the car use a pseudo random number

generator (PRNG) that calculates a 32- or 48-bit seed value, which is used as a synchronised starting

code [10]. The synchronization process between the keyfob and the car that involves this initial code

is also referred to as "pairing". After that, every time the car owner presses the unlock button on the

keyfob, the next 16-bit value in the sequence is calculated, taking the result of the previous button press

as input. In theory, if the code received from the transmitter, including the calculated value, matches the

one pre-calculated by the receiver unit, the car is unlocked and the value is automatically invalidated.

In practice, most rolling code implementations store a list of pre-calculated valid next codes, usually 256

in number, and compare received codes against all of them until a match is found. The reason being that

otherwise the keyfob and the receiver unit would be out of sync as soon as even a single transmitted code

1It should be noted that unlike older versions of KeeLoq, which are still widely used in cars manufactored in the past 20 years,

recent implementations include a timer driven message counter that continuously increments after a short amount of time,

thus providing a security measure specifically against replay attacks [9]. This causes rolling codes to become invalid long

before an attacker could attempt to use them.

Simon D. Hasler 4

3. Background

is missed for any reason. If a match is found at the nth position in the list, the sequence is updated to

range from n + 1 to 256 + n, thus always giving the car owner 256 chances to successfully transmit a

signal to their car and unlock it.

3.1.2. The RollJam Attack

The wireless attacking scheme that hacker and hobbyist Samy Kamkar named "RollJam" when he pre-

sented it at DEF CON 23 in Las Vegas in 2015 [5] is able to circumvent the security measures imple-

mented in rolling code schemes such as older implementations of KeeLoq by preventing the car from

receiving unlock signals while at the same time saving them for later use.

What is important to know is that the receiver unit inside a car does not just listen for signals on an

exact frequency but rather inside a receive window, which, in essence, is a small frequency range with

the programmed frequency—for my Škoda Fabia II 2008 model that is 434420000 Hz—at its center, as

can be seen on the spectrogram in Figure 3.1. This allows to jam the receiver window of the car, thus

preventing it from receiving and invalidating unlock signals without overlapping the keyfob signal data

with jamming data. If at the same time the attacker is able to capture and save a keyfob signal, they can

then easily replay it to the car later and the receiver unit won’t invalidate the signal as it has not seen it

before.

This process becomes a bit more sophisticated if a victim really wants to unlock their car and, after

one failed attempt due to the jamming, presses the unlock button on the keyfob again, thus producing

another rolling code that invalidates the previous one. To still be able to perform a successful attack,

RollJam therefore captures the keys of both unlock attempts that occur during the jamming, then stops

jamming and replays the first captured key. Since the frequency window now is not jammed anymore,

the receiver unit is able to "see" the signal, invalidates it, and unlocks the car, leaving the victim none the

wiser. However, as the attacker is in possession of another key that includes a later calculated value in

the rolling code sequence, they are still able to unlock the car at a later time.

Simon D. Hasler 5

3. Background

Figure 3.1.: RollJam attack inside the receive window of the car, as observed in the spectrogram [5].

Considering that there are still millions of cars on the road that have old, insecure versions of KeeLoq

rolling code schemes implemented and are thus susceptible to RollJam, this attack technique serves as

motivation and as technical basis for this work.

3.2. Signal Capture and Replay in Practice

Unlike micro-processor manufacturers and cryptographers who could swap out old microchips in their

hardware against newer, better ones and implement stronger, more secure cryptographic algorithms,

respectively, I show that even with low-cost hardware such as RTL-SDRs and transceivers based on the

Texas Instruments CC1111 chipset it is possible to implement a system capable of detecting attacks like

RollJam by recognizing different signal origins. On the software-side I use freeware like the Python-

based GNU Radio, the rich Python scientific ecosystem, including libraries such as NumPy and Pandas

and the SciPy and Scikit-learn frameworks for machine learning, as well as the powerful MATLAB

and Simulink platform together with the Communications System Toolbox and the RTL-SDR support

package, which I was lucky enough to purchase with a generous student discount.

However, before testing of different approaches on a Signal Intrusion Detection System could be started,

first, reproducing the RollJam attack had to be attempted as being able to transmit captured signals myself

would be an integral part of this research work. The devices I had available for that purpose are presented

Simon D. Hasler 6

3. Background

in the following sub-sections.

3.2.1. RTL2832U based SDR Dongle

So-called Software Defined Radios (SDRs) utilize Digital Signal Processing algorithms to implement

most of the functionality usually associated with the Physical Network Layer in software. All the hard-

ware needed for a standard SDR receiver is nothing more than a high-speed GHz sampler chip capable

of digitizing a broad spectrum of radio frequencies, and an antenna [11]. Most consumer-level SDRs,

additionally, come with a small housing that holds the micro-chip and a USB connector so that they can

easily be used with a wide variety of computers and notebooks.

The "RTL" in RTL-SDR stems from the REALTEK RTL2832u demodulator [12] that is used in many

low-cost SDRs. For this work, the NooElec NESDR Nano 2+ RTL-SDR [13] was chosen, which also

features a Rafael Micro R820T2 second generation tuner with improved sensitivity and selectivity

compared to the older R820T model, and boasts an approximate tuning range of 25 MHz to 1.7 GHz.

Figure 3.2.: NooElec NESDR Nano 2+ with MCX antenna plugged into a MacBook Pro mid-2014 model.

While it is not possible to retransmit any signals with this simple RTL-SDR device, it is an excellent tool

to explore the frequency spectrum, observe what the signal of interest looks like in a waterfall diagram

(also referred to as spectrogram), and get an idea about what is possible with SDRs in general. I used

this device a lot to improve my understanding of digital signals by tweaking the various parameters in

tools such as GQRX, GNU Radio, and MATLAB Simulink.

Figure 3.3 shows the signal of the keyfob from my Škoda Fabia II 2008 model in both the frequency

spectrum and the spectrogram. The center frequency is 434420000 Hz, which is quite common for

European cars from Volkswagen Group manufactured around that time, the radio frequency (RF) tuner

Simon D. Hasler 7

3. Background

gain2 is set to 25 dB, and the "Sample rate"3 is 2.8 MHz or 2800000 Hz.

Figure 3.3.: Škoda Fabia II 2008 model keyfob signal at 434.42 MHz shown in the frequency spectrum and in a

waterfall diagram created with MATLAB Simulink.

Probably the most interesting aspect to notice in Figure 3.3 is the main spike exactly at the set fc, as well

as the four minor spikes, two of which are occurring with only a minimal offset to either side of fc while

the other two are quite close to fc − fs/2 and fc + fs/2.

Observing the keyfob signal in GQRX using the same configuration parameters previously applied to

MATLAB Simulink results in quite a similar picture, as can be seen in Figure 3.4. In the waterfall

diagram the signal is clearly recognizable as a yellow and red data burst exactly at fc.

2Changing the tuner gain directly affects the quality of signals received by the RTL-SDR device. Increasing the gain will add

energy to a signal, thus enhancing its quality, however, it should be noted that this process also affects noise and unwanted

signals within an observed bandwidth [11]. Gain is usually measured in decibel (dB) or decibel-milliwatts (dBm), depending

on the amount of power.
3The sampling rate specifies the bandwidth that can be observed in a spectrum analyzer in fs MHz. It ranges from fc − fs/2

to fc + fs/2 with both ends being equally distant to the center frequency fc. Sometimes also referred to as sampling

frequency, it indicates the average number of samples obtained in 1 second. For a sampling rate of 2.8 MHz that would

mean that the SDR device is set to output 2.8 million samples per second. [11]

Simon D. Hasler 8

3. Background

Figure 3.4.: Škoda Fabia II 2008 model keyfob signal at 434.42 MHz shown in the frequency spectrum and in a

waterfall diagram using GQRX.

The NooElec NESDR Nano 2+ was also used to observe the signals of all the following transmitter

devices in the spectrogram and the frequency spectrum.

3.2.2. Rad1o Badge

The Rad1o Badge was created as a giveaway for attendees of the 2015 Chaos Communication Camp

[14] and was meant to inspire people to get into Software Defined Radio hacking. The hardware of the

badge is based on Michael Ossmann’s HackRF One [15], which is a half-duplex transceiver with an

operating frequency from 1 MHz to 6 GHz. The advantage of that is that both devices are software-

compatible, meaning that the same tools can be used with both of them. However, as some parts of rad1o

had to be redesigned around parts donated by some chip vendors, HackRF One and rad1o use different

firmwares. Also, the latter is not quite as powerful as a transceiver, operating in a range from 50 MHz to

only 4 GHz. An ARM Cortex M4 CPU is used to process the I/Q samples it receives from the Wimax

transceiver. What is unique to the rad1o is the Nokia 6100 LCD that displays information about the

device status.

"Half-duplex transceiver" means that the device can be used both as a receiver and a transmitter but not

simultaneously. Data can either be received or transmitted at a time.

Simon D. Hasler 9

3. Background

Figure 3.5.: Rad1o Badge that was handed out to attendees of the Chaos Communication Camp 2015.

With the rad1o it was fairly easy to perform a successful capture and replay attack on the test car, i.e.,

the Škoda Fabia II 2008 model. All that was required was creating two flow graphs in GNU Radio, one

for capturing a signal (repaly_RX.grc), and another for replaying it (replay_TX.grc) [16]. The

settings were the same as when using MATLAB Simulink and GQRX with the RTL-SDR: 434.42 MHz

as fc and 2.8 MHz as sampling rate.

To make GNU Radio recognize a connected rad1o or HackRF device and allow it to listen to signals on

the frequency spectrum, the osmocom Source block was used. In order to be able to actually see what is

happening on the spectrum and to confirm that a signal is received by rad1o, a QT GUI Frequency Sink

block that displays the data it receives from the osmocom Source was added to the model, too. Capturing

a signal for later replay attacks was done by using the File Sink block that saves a captured signal in the

specified output file. The full "receive" model can be seen in Figure 3.6.

Figure 3.6.: GNU Radio flow graph for observing the spectrum at 434.42 MHz and saving a captured signal to a

specified output file.

Simon D. Hasler 10

3. Background

The GNU Radio flow graph for transmitting the previously captured signal, which can be seen in

Figure 3.8, is only slightly more sophisticated. This time, a File Source block was used to provide

the model with data input, specifically the file that holds the captured signal. Before the signal is passed

to the osmocom Sink and thus to the device itself, a Multiply Const block amplifies the signal in the

digital domain, increasing its power just a bit.

Visualizing the signal, again, was accomplished by adding a QT GUI Frequency Sink block and a QT

GUI Time Sink block. While the former displays signals in the frequency domain, the latter does the

same in the time domain, producing an entirely different view of the very same signal. Ultimately, it

comes down to the questions "at what frequency is a signal received exactly?", versus "at what times do

amplitudes occur in that signal?", each of which allows to draw important conclusions about an observed

signal. The difference between frequency domain and time domain is illustrated in Figure 3.7.

Throttling the data throughput simply limits it to the specified sampling rate, ensuring that GNU Radio

does not consume all CPU resources when executing the model.

Figure 3.7.: Comparison of a signal observed in the time domain and the frequency domain [17].

Simon D. Hasler 11

3. Background

Figure 3.8.: GNU Radio flow graph for observing the spectrum at 434.42 MHz and replaying a captured signal

after retrieving it from a specified input file.

When the flow graph depicted in Figure 3.8 is executed, rad1o transmits the data of the captured signal

on the set frequency. If the transmission is observed in the spectrum and the waterfall diagram created

by running the MATLAB Simulink model, another signal graph that looks quite similar to the one pro-

duced by the keyfob at about fc can be seen. However, throughout numerous transmissions, rad1o kept

producing a different number of minor spikes during signal transmission that could be observed at equal

offsets to either side of fc.

Figure 3.9.: Signal replay with rad1o at 434.42 MHz shown in the frequency spectrum and in a waterfall diagram

created with MATLAB Simulink.

Looking at the signal graph in GQRX verifies the observations made in MATLAB, as can be seen in

Simon D. Hasler 12

3. Background

Figure 3.10. This is interesting especially when directly comparing the signal graph of each device to

that of the others. The continuous appearance of the yellow and red signal in the waterfall diagram hints

at the GNU Radio transmit flow graph repeatedly sending the signal at equal time intervals.

Figure 3.10.: Signal replay with rad1o at 434.42 MHz shown in the frequency spectrum and in a waterfall diagram

using GQRX.

With rad1o and the two GNU Radio flow graphs I was able to perform a successful capture and replay

attack on my Škoda Fabia, opening the car with a MacBook Pro and the connected transceiver device

instead of the keyfob. As opposed to the RollJam attack, no jamming of the legit signal originating

from the keyfob was performed, which would have prevented the car from receiving (and invalidating)

it. Instead, to achieve the same, the signal was simply captured outside of the receiving range of the car.

There was no particular reason for doing so other than intentionally keeping the whole setup simple and

rather focus on observing what the transmission looks like in the spectrum during the attack. At this

point it also became clear that all these wireless experiments with connected transceiver devices draw a

lot of power from a notebook and deplete the battery fast if it is not connected to a power source.

3.2.3. YARD Stick One

From a technical perspective, YARD Stick One, which is short for "Yet Another Radio Dongle", is

not a SDR, unlike, e.g., the HackRF One. On Great Scott Gadgets, Michael Ossmann’s webstore, it

is described as a sub-1 GHz wireless test tool controlled by a computer [18]. The USB dongle with

Simon D. Hasler 13

3. Background

the yellow PCB is based on a Texas Instruments CC1111, a low-power sub-1 GHz system-on-

chip (SoC) designed for low-power wireless applications [19]. YARD Stick One, too, is a half-duplex

transceiver that supports the following modulation modes: ASK, OOK, GFSK, 2-FSK, 4-FSK, and MSK.

Its official operating frequencies are 300-348 MHz, 391-464 MHz, and 782-928 MHz, however, some

dongles have been found to also work slightly outside these ranges [20].

What makes YARD Stick One a very powerful tool is the RfCat firmware and client written by GitHub

user atlas0fd00m [21], which basically provides interactive Python access to the sub-Ghz frequency

spectrum.

Figure 3.11.: YARD Stick One with enclosure and ANT500 antenna.

As the YARD Stick One is a rather popular device in the hacker community, various Python scripts for

capture and replay attacks as well as the actual RollJam attack have already been created (and used) by

hackers and hobbyists and can be found on their public GitHub accounts. I tried the ones that looked

most promising [22, 23] (although without the jamming part due to having had only one YARD Stick

One available to me) and even wrote a Python script myself based on those.

Unfortunately, though, YARD Stick One would neither open my car, nor another even older Škoda

Fabia I that was manufactured in 2007. Someone else, however, seems to have been able to open their

Toyota RAV4 2011 model using [23] and two YARD Stick One, as they prove by demonstrating the

attack in a Youtube video [24].

Their success was the reason for including the YARD Stick One in my experiments as it clearly can

be used as a code grabber and replayer in RollJam attacks. Figure 3.12 shows that the signal that was

captured and retransmitted with the device does look quite similar to the real keyfob signal, even though

it was not accepted by the cars I tried the attack on. In the visualized result of this transmission, numerous

small spikes can be seen to both sides of fc while the main spike and the two spikes closest to it appear

to be just the same as in the keyfob signal.

Simon D. Hasler 14

3. Background

Figure 3.12.: Signal replay with YARD Stick One at 434.42 MHz shown in the frequency spectrum and in a

waterfall diagram created with MATLAB Simulink.

The GQRX spectrum viewer with its ability to detect and hold peaks illustrates this even better, as can

be seen in Figure 3.13.

Figure 3.13.: Signal replay with YARD Stick One at 434.42 MHz shown in the frequency spectrum and in a

waterfall diagram using GQRX.

Simon D. Hasler 15

3. Background

3.2.4. Raspberry Pi 3 Model B

Usually, the well-known credit card-sized mini-computer Raspberry Pi 3 [25], which is based on a 1.2

GHz Broadcom BCM2837 64-bit quad-core CPU, is not the first thing that comes to mind when thinking

about receiving and transmitting radio signals in the 433 MHz band that European automobiles use

in their remote keyless entry systems. However, thanks to the RPiTX library developed by Evariste

Courjaud aka F5OEO [26, 27], a Rasperrby Pi can now be turned into a general purpose transmitter

for any frequency in the range from 5 KHz to 500 MHz [28]. This is achieved by using square waves

to modulate a signal on the GPIO pins of the device. All that is needed is a male to female jumper

wire attached to the used GPIO pin where it serves as antenna for the Raspberry Pi. This way, the

mini-computer is capable of broadcasting signals using FM, AM, SSB, SSTV, or the FSQ modulation

mode.

Figure 3.14.: Raspberry Pi 3 Model B with a male-to-female jumper wire connected to GPIO pin 18 as antenna

and the NooElec NESDR Nano 2+ plugged into one of its USB ports.

The most interesting approach to use the Raspberry Pi for capture and replay attacks that I have found is

the subarufobrob toolset [29] created by Tom Wimmenhove. It consists of several tools such as fobrob,

which allows the capture of signals, and rpitxify for converting the signals to a file format compatible

to rpitx. Once that is done, the converted signal can be replayed using rpitx, as he describes in the

"Operation" section of the repository readme. The toolset works on the Subaru Forester 2009 model, as

Wimmenhove demonstrates in a Youtube video [30], and according to him is also likely to work on at

least five other Subary models from 2004 to 2011 as those use the same keyfob.

For some reason, fobrob did not capture any signals from my Škoda keyfob, despite the fact that the

correct frequency of 434.42 MHz had been specified in the source code, i.e., the fobrob.c file, before

building the project. Therefore, the Raspberry Pi could not be used for the experiments in this research

Simon D. Hasler 16

3. Background

work, however, I did find it worth noting that even with this device people have successfully unlocked

cars.

Simon D. Hasler 17

4. Research Methodology

The various sections in this chapter contain detailed explanations of the individual steps required to

gain the necessary insight into digital signals and create the foundation upon which it was possible

to implement a proof-of-concept for a Signal Intrusion Detection System. Various Python scripts are

introduced that allowed to create visual representations of captured signals and extract features from

them, as well as accumulate data-points consisting of those features in a dataset and perform machine

learning on it. While the complete source code can be found in the Appendix, the most significant parts

of each script are presented in this chapter.

4.1. Feature Extraction for Signal Classification

In regards to the first research question, it is clear that the first part of this research work had to be

visualizing the signals of all transmitting devices in a way such that it would be possible to compare

them and look for characteristics that could be used to distinguish between them. For that purpose, I

decided to utilize the Python programming language and some of its powerful libraries such as NumPy

and Matplotlib. The Seaborn visualization library was used to enhance the appearance of the signal plots,

and custom libraries such as Pyrtlsdr and RfCat allowed me to interact with the RTL-SDR dongle and the

YARD Stick One. The full source code of my Python scripts can be found in the Appendix. I would like

to stress, though, that all scripts were written explicitly for this research project and the devices used in

it. Using them for other purposes might not yield any meaningful results at all. Great care was, however,

taken in writing clearly structured code and using variable names that should make sense to anyone with

an understanding of what the scripts aim to accomplish. Thus, it should be fairly easy to adapt them to

suite the needs of similar projects.

In this Section I explain what the various parts of the two scripts used to compare signals, i.e., replay.py

and plot_diffs.py, do, what results I got from them, and how those may be interpreted.

Simon D. Hasler 18

4. Research Methodology

4.1.1. Script for Replay Attack: replay.py

This Python script was used to capture exactly two signals using the YARD Stick One and then replay

them, made possible by the RfCat firmware that every new YARD Stick One comes flashed with, and the

RfCat client that can be obtained from [21]. After importing the library with

1 from rflib import *

an RfCat() object can be created and configure with all parameters required to receive signals from

a specific source, and then later replay them on the same frequency and using the same modulation the

original source is using.

In the main() function, consecutive raw signals are captured and converted to hexadecimal representa-

tion. Once the user decides to switch from receiving to transmitting signals, which they are asked to do

after every capture, the signals are first converted to Python bytes containing the raw data and are then

transmitted. This happens for as long as the user does not end the script execution, or until all captured

signals stored in the raw_signals Python list have been transmitted.

4.1.2. Script for Signal Plotting and Feature Extraction: plot_diffs.py

After creating the GNU Radio programs depicted in Figure 3.6 and Figure 3.8 and writing the replay.py

Python script, I finally had the means to capture and replay signals transmitted from the Škoda Fabia II

keyfob using both the Rad1o and the YARD Stick One. In order to make the various transmitted signals

visually comparable, I decided to write another Python script that would do the following: plot the power

spectral density of the first received signal, which always originates from the keyfob as the reference de-

vice, do the same for the second received signal, which may originate from either one of the hacking

devices, and, lastly, create an overlay plot of both signals. All this is done in one figure using three

subplots, to be precise.

Just like in replay.py, all the relevant Python libraries are imported, of which rtlsdr, peak from

peakutils, pyplot from Matplotlib, and Seaborn are especially noteworthy.

1 from rtlsdr import *

2 # ...

3 import peakutils.peak

4 import matplotlib.pyplot as plt

5 import seaborn as sns; sns.set()

Simon D. Hasler 19

4. Research Methodology

rtlsdr is used to create a RtlSdr() object that serves the same purpose as the RfCat() object men-

tioned in the previous subsection, only that this time the parameters required to make the RTL-SDR

dongle listen on the frequency of the keyfob, grab received raw samples and store them in a Python list

are provided. From those samples, the corresponding power levels are calculated using the common

logarithm (logarithm to base 10). Both these operations take place in an infinite loop that is only exited

when two signals meeting a certain requirement to be recognized as such are captured and plotted.

During the observation of the frequency spectrum at 434.42 MHz in GQRX, I noticed that the noise level,

i.e., when no distinct signal is present, would always remain below a power level of -10 dB, which led

me to the assumption that whenever that specific power level is exceeded, a signal of some sort has to be

present. Thus, in each loop iteration the code checks whether the power level calculated from whatever

raw data the RTL-SDR reads exceeds the threshold of -10 dB.

1 raw_samples = sdr.read_samples(1024*1024)

2 raw_power_lvls = 10*log10(var(raw_samples))

3 # ...

4

5 if raw_power_lvls >= -10:

6 # ...

Once two valid signals have been captured, the first figure consisting of three subplots, as previously

mentioned, is created by using Matplotlib, which is a Python 2D plotting library. To achieve a better

visual appearance of the plots that looks more modern and aesthetic, they are enhanced through the use

of Seaborn. This library is based on Matplotlib and its main purpose is to provide a high-level interface

for statistical data visualization.

Two captured signals from the keyfob can be seen in Figure 4.1.

Simon D. Hasler 20

4. Research Methodology

433.0 433.5 434.0 434.5 435.0 435.5
Frequency (MHz)

51

41

31

21

11

1

9

19

P
S

D
 (d

B
/H

z)
Power Spectral Density Comparison

Keyfob Sig1

433.0 433.5 434.0 434.5 435.0 435.5
Frequency (MHz)

51

41

31

21

11

1

9

19

P
S

D
 (d

B
/H

z)

Keyfob Sig2

433.0 433.5 434.0 434.5 435.0 435.5
Frequency (MHz)

51

41

31

21

11

1

9

19

P
S

D
 (d

B
/H

z)

Keyfob Sig1
Keyfob Sig2

Figure 4.1.: Two signals transmitted by the Škoda Fabia II keyfob.

As expected, the two signals are not absolutely identical but very similar, and if the first signal—plotted in

pink—was not marginally stronger than the second in regards to its power level, it would not be possible

for the human eye to tell any difference from the overlay plot at all. Both signals feature almost the exact

same number of recognizable peaks at seemingly the same positions, and the overall shape appears to be

the same as well.

Also, the fact that the keyfob signal spreads over a rather high bandwidth (fc − fs/2 to fc + fs/2) was

begging for further investigation by "zooming in" on the peaks and checking whether they truly converge

on the exact same frequencies. There is already a number of algorithms for detecting peaks in digital

signals implemented in Python, which have been listed and described by GitHub user MonsieurV on

[31]. Of all the various choices, I decided to take a closer look at those two that work in a similar way as

the findpeaks() function from MATLAB and produce comparable results. Eventually, I chose the

Simon D. Hasler 21

4. Research Methodology

peakutils.peak.indexes() method as I found it to be the easiest and most adaptable to work

with for my specific requirements. The following lines of Python code show how the plot_diffs.py

script calculates, first, the correct power levels from the ones retrieved by the plt.psd() method and,

second, uses peakutils to get the indices of all the peaks it is able to detect by applying the parameters

provided to the indexes() method.

1 Pxx_1, freqs_1 = plt.psd(signals[0], NFFT=2048,

Fs=sdr.sample_rate/1e6, Fc=sdr.center_freq/1e6,

scale_by_freq=True, color=DEF_PINK, label=DEF_SIG_1)

↪→

↪→

2

3 # ...

4

5 power_lvls_1 = 10*log10(Pxx_1/(sdr.sample_rate/1e6))+10*log10(8/3)

6 # ...

7 indexes_1 = peakutils.indexes(power_lvls_1, thres=0.25, min_dist=10)

Dividing the sample rate by 1e6 before dividing the power levels by the sample rate ensured that the

result was in MHz rather than Hz. Adding 10 times the common logarithm of 8/3 was necessary since

the plt.psd() method does plot the corrected power levels itself but returns the non-corrected ones.

The energy correction factor for the signals turned out to be 10 ∗ log10(8/3), which equals 4.3 dB.

What made the correction necessary in the first place was the window function applied to the fast Fourier

transformation of the signal in the power spectral density calculation. By default, the plt.psd()

method applies the Hanning window, which lowers the overall power level and shapes the signal in a

specific way, as the plots show.

While the indexes() method performs rather well in detecting peaks and retrieving accurate indices,

it can be challenging to choose threshold and distance parameters such that only significant peaks are

detected, and that the algorithm does not leave out too many of them due to a too high distance value.

Looking for peaks above the lower 25% of the plot that are separated by 10 neighboring peaks worked

decently for my signals, although I did experience several executions of my script in which the center

peak was left out as it happened to be one of those 10 peaks between two recognized peaks. Rerunning

the script several times eventually solved this.

Now, with the indices of all recognized peaks available, the script goes through them and filters out the

ones that are above a power level of -20 dB.

1 power_lvls_1_max = [i for i in power_lvls_1[indexes_1] if i >= -20]

Simon D. Hasler 22

4. Research Methodology

2 # ...

3 check_1 = np.isin(power_lvls_1, power_lvls_1_max)

4 # ...

5 indexes_1_max = np.where(check_1)

As can be seen in Figures 4.3 to 4.6, signals from different transmitters may exhibit different num-

bers of recognizable peaks. For obvious reasons, it only makes sense to compare the peaks present

in the reference signal with whatever the test signal exhibits at the exact same positions, hence it

was necessary to store not only the coordinates of peaks in the test signal but also its power levels

at the frequencies of the reference peaks. Since it is rather uncomfortable to work with two separate

entities that actually belong together, I utilized the column_stack() method from the NumPy li-

brary to put the corresponding frequencies and power levels together to form actual two-dimensional

vectors. The Python list vectors_sig_1 stores the peak coordinates of the reference signal (Sr),

vectors_sig_2_cmp does the same for the power levels of the test signal at the identical frequen-

cies, and vectors_sig_2_real stores the peak coordinates of the test signal, which is needed for

accurate plotting.

1 vectors_sig_1 = np.column_stack((freqs_1[indexes_1_max],

power_lvls_1[indexes_1_max]))↪→

2 vectors_sig_2_cmp = np.column_stack((freqs_2[indexes_1_max],

power_lvls_2[indexes_1_max]))↪→

3 vectors_sig_2_real = np.column_stack((freqs_2[indexes_2_max],

power_lvls_2[indexes_2_max]))↪→

Zooming in on the peaks was accomplished by, first, specifying the peak frequencies of Sr as centers on

the x axis and calculating the mean values of the y coordinates in both signals to get a good center point

for each subplot, and, second, by adding small positive and negative offset values on both axis. From

the overlay plot in Figure 4.1 it was already possible to tell that most comparable peaks are very close to

each other, so it was fairly reasonable to use very small offset values like +/-5 Hz (0.005 MHz) for the x

axis and +/-10 dB for the y axis.

1 power_mean = np.mean(np.column_stack((vectors_sig_1[i][1],

vectors_sig_2_cmp[i][1])))↪→

2 plt.xlim(vectors_sig_1[i][0]-DEF_X_OFFSET,

vectors_sig_1[i][0]+DEF_X_OFFSET)↪→

Simon D. Hasler 23

4. Research Methodology

3 plt.ylim(power_mean-DEF_Y_OFFSET, power_mean+DEF_Y_OFFSET)

At this point there was just one last thing to do before plotting of the individual peaks could commence:

When comparing two signals originating from different transmitters it is quite possible that one of them

will exhibit a significantly larger number of peaks than the other, which makes it a pointless endeavor to

take the first few peaks from each signal and try to find any meaningful relation between them. However,

if the data in transit is the same and if the transmission parameters such as frequency and sample rate

were chosen identically, there will inevitably be a number of spikes at very similar positions with peaks

at comparable coordinates as well. Therefore, I had to implement a small window for each peak in the

signal exhibiting the smaller number of peaks (Ss), with the exact frequency, i.e., the x coordinate, of the

peak at its center. And then iterate over the Python list storing the peak coordinates of the other signal

(Sl) and check for each one whether it would lie within the specified range or not. If so, a peak that

occurred in both captured signals at comparable positions was found. Otherwise, I would have to accept

that for a particular peak in Ss there was no corresponding peak at any similar position in Sl . In Python

code this looks as follows:

1 j=i

2 if (min(len(vectors_sig_1), len(vectors_sig_2_real)) ==

len(vectors_sig_1)): # vector_sig_1 is the smaller list↪→

3 while (j < len(vectors_sig_2_real)-1 and (vectors_sig_1[i][0] <

vectors_sig_2_real[j][0]-DEF_X_OFFSET*2 or

vectors_sig_1[i][0] >

vectors_sig_2_real[j][0]+DEF_X_OFFSET*2)):

↪→

↪→

↪→

4 j+=1

5 plt.axvline(x=vectors_sig_1[i][0], linewidth=1,

color=DEF_BLACK)↪→

6 plt.axvline(x=vectors_sig_2_real[j][0], linewidth=1,

color=DEF_BLACK)↪→

7 # ...

8 elif (min(len(vectors_sig_1), len(vectors_sig_2_real)) ==

len(vectors_sig_2_real)): # vector_sig_2_real is the smaller

signal

↪→

↪→

Simon D. Hasler 24

4. Research Methodology

9 while (j < len(vectors_sig_1)-1 and (vectors_sig_2_real[i][0] <

vectors_sig_1[j][0]-DEF_X_OFFSET*2 or

vectors_sig_2_real[i][0] >

vectors_sig_1[j][0]+DEF_X_OFFSET*2)):

↪→

↪→

↪→

10 j+=1

11 plt.axvline(x=vectors_sig_1[j][0], linewidth=1, color=DEF_BLACK)

12 plt.axvline(x=vectors_sig_2_real[i][0], linewidth=1,

color=DEF_BLACK)↪→

The remaining part of the plot_diffs.py script produces a second figure with five subplots as that is

the number of peaks above the power level of -20 dB in the reference signal. Figure 4.2 shows the peaks

from the two keyfob signals plotted in Figure 4.1.

0.0025 0.0050 0.0075 0.0100
MHz +4.3321e2

21

11

dB
/H

z)

Peak 1

0.0025 0.0050 0.0075 0.0100
MHz +4.342e2

11

1

dB
/H

z)

Peak 2

0.0125 0.0150 0.0175 0.0200
MHz +4.344e2

9

19
dB

/H
z)

Peak 3

0.0250 0.0275 0.0300 0.0325
MHz +4.346e2

21

11

dB
/H

z)

Peak 4

0.0025 0.0050 0.0075 0.0100
MHz +4.3561e2

21

11

dB
/H

z)

Peak 5

Most significant Peaks from fc fs/2 to fc + fs/2

Figure 4.2.: Comparing the peaks of two signals transmitted by the Škoda Fabia II keyfob.

From looking at those five subplots, two things can be told. First, and that is the most obvious, the

peakutils algorithm was able to detect all five dominant peaks correctly, which can be verified by

comparing the center frequencies with the full signal plots in Figure 4.1. Second, those five peaks con-

verge almost perfectly on the very same frequencies. Except for peak 4, there is no offset whatsoever

within any meaningful frequency range.

Next, a comparison between a signal originating, again, from the keyfob and one that was transmitted by

the YARD Stick One was plotted. The result can be seen in Figure 4.3.

Simon D. Hasler 25

4. Research Methodology

433.0 433.5 434.0 434.5 435.0 435.5
Frequency (MHz)

50

40

30

20

10

0

10

20

P
S

D
 (d

B
/H

z)
Power Spectral Density Comparison

Keyfob

433.0 433.5 434.0 434.5 435.0 435.5
Frequency (MHz)

52

42

32

22

12

2

8

18

P
S

D
 (d

B
/H

z)

YARD Stick One

433.0 433.5 434.0 434.5 435.0 435.5
Frequency (MHz)

52

42

32

22

12

2

8

18

P
S

D
 (d

B
/H

z)

Keyfob
YARD Stick One

Figure 4.3.: Comparison of a signal transmitted by the Škoda Fabia II keyfob and the YARD Stick One, respec-

tively.

It becomes clear that there is far less similarity when a signal originates from different transmitters than

when the same one is used. Not only does the shape of the received signals vary greatly, the one from

the YARD Stick One also exhibits a far greater number of peaks. To exclude the possibility that all those

minor spikes are caused by noise, the signal capture was repeated in different geographic locations at

different times of the day but the result was always pretty much the same. It is thus save to assume that

this truly is what a keyfob signal looks like when transmitted by a YARD Stick One.

From the overlay plot it is hard to tell whether the peaks converge, so a closer look at them is required

again and provided in Figure 4.4.

Simon D. Hasler 26

4. Research Methodology

0.0025 0.0050 0.0075 0.0100
MHz +4.3321e2

22

12

dB
/H

z)
Peak 1

0.0025 0.0050 0.0075 0.0100
MHz +4.342e2

12

2

dB
/H

z)

Peak 2

0.0125 0.0150 0.0175 0.0200
MHz +4.344e2

8

18

dB
/H

z)

Peak 3

0.0250 0.0275 0.0300 0.0325
MHz +4.346e2

22

12

dB
/H

z)

Peak 4

0.0025 0.0050 0.0075 0.0100
MHz +4.3561e2

22

12

dB
/H

z)

Peak 5

Most significant Peaks from fc fs/2 to fc + fs/2

Figure 4.4.: Comparing the peaks of a signal transmitted by the Škoda Fabia II keyfob and the YARD Stick One,

respectively.

From looking at the found peaks, it can be deduced that the dominant peaks that both signals have in

common seem to occur rather close to each other, however, they almost never converge at the exact

same frequencies. By looking at the frequencies it is possible to tell that subplot 3 shows the center

peak of both signals, while subplot 1 and subplot 5 show the leftmost and the rightmost dominant peak,

respectively. The yellow YARD Stick One peaks of the two massive spikes that occur next to the center

spike are depicted in subplot 2 and subplot 4, reaching power levels far higher than their counterparts in

the pink keyfob signal. This results in the yellow peak 4 not even being shown inside the subplot.

Lastly, signals transmitted by the keyfob and the Rad1o were compared. Figure 4.5 shows the respective

plots and the overlay plot.

Simon D. Hasler 27

4. Research Methodology

433.0 433.5 434.0 434.5 435.0 435.5
Frequency (MHz)

50

40

30

20

10

0

10

20

P
S

D
 (d

B
/H

z)
Power Spectral Density Comparison

Keyfob

433.0 433.5 434.0 434.5 435.0 435.5
Frequency (MHz)

42

32

22

12

2

8

18

P
S

D
 (d

B
/H

z)

Rad1o

433.0 433.5 434.0 434.5 435.0 435.5
Frequency (MHz)

51

41

31

21

11

1

9

19

P
S

D
 (d

B
/H

z)

Keyfob
Rad1o

Figure 4.5.: Comparison of a signal transmitted by the Škoda Fabia II keyfob and the Rad1o, respectively.

This comparison exhibits the least number of features that both signals have in common. The shape of

both plotted signals appears clearly distinguishable. While the pink signal from the keyfob features a

constant rise to the center frequency on both sides of it, the blue signal from the Rad1o appears to have

a flattening rise towards the main spike at the center frequency. Also, there is only a very small number

of significant peaks in the signal originating from the Rad1o, three of which seem to be truly dominant.

The spike to the left of the center spike in the blue signal did not always occur in multiple transmissions

from the Rad1o, which excludes it as a reproducible characteristic. What is visible for the human eye in

the overlay plot already is that the three dominant peaks do not occur at the exact same frequencies. All

peaks seem to feature a small offset towards lower frequencies as compared to their counterparts in the

pink reference signal from the keyfob. This characteristic becomes all the more obvious when zooming

in on the peaks again, which is depicted in Figure 4.6.

Simon D. Hasler 28

4. Research Methodology

0.0025 0.0050 0.0075 0.0100
MHz +4.3321e2

31

21

dB
/H

z)
Peak 1

0.0000 0.0025 0.0050 0.0075
MHz +4.342e2

21

11

dB
/H

z)

Peak 2

0.0125 0.0150 0.0175 0.0200
MHz +4.344e2

1

9

dB
/H

z)

Peak 3

0.0250 0.0275 0.0300 0.0325
MHz +4.346e2

21

11

dB
/H

z)

Peak 4

0.0025 0.0050 0.0075 0.0100
MHz +4.3561e2

31

21

dB
/H

z)

Peak 5

Most significant Peaks from fc fs/2 to fc + fs/2

Figure 4.6.: Comparing the peaks of a signal transmitted by the Škoda Fabia II keyfob and the Rad1o, respectively.

The results are three meaningful peaks none of which converge at any frequency. Subplot 3 shows

the center peaks of both signals with the blue peak being off by more than ~5000 Hz (0.005 MHz).

What makes this offset especially interesting is that it hints at the presence of some tolerance range

implemented in the receiver unit in the car. This can be told by the fact that I have been able to suc-

cessfully unlock my Škoda Fabia II using the Rad1o and the two GNU Radio programs presented in

the Background Chapter. Subplot 1 and subplot 5 show the leftmost and the rightmost dominant peak,

respectively.

To summarize what can be learned from this Section: It is definitely possible to find characteristics in

signals from various origins that distinguish them from each other and allow for signal classification, as I

show in the next Section. Furthermore, it could be seen that even when transmitting the very same signal,

different transmitting devices produce different signal shapes with various numbers of peaks. Depending

on the transmitting device, the peaks may even be clearly off by measurable frequency offsets from the

peaks in the signal of the reference transmitter. This leaves me with three characteristics for measurement

of differences in digital signals: shape, number of dominant peaks, and position of the peaks within the

specified frequency range.

Simon D. Hasler 29

4. Research Methodology

4.2. IDS Approach - Machine Learning for Label Prediction

Considering the fact that this research project aims at classifying signals based on certain characteris-

tics, and my need for a highly dynamic solution that would be able to handle large amounts of data and

increase its accuracy through making predictions on constantly added new data, I decided to try ma-

chine learning algorithms for classification of labeled data. Specifically, I was working with two Python

scripts, the first of which was applying the k-nearest Neighbors algorithm (k-NN) to a previously pre-

pared dataset. k-NN was the obvious choice as it is based on the simple idea of predicting the label of

unknown values by matching them with the most similar known, i.e., labeled, values.

The second script was applying a specific Support Vector Machine (SVM), namely the Support Vector

Classification (SVC) with linear kernel to the same dataset. Both the k-NN and the SVC are well-suited

algorithms for this research problem, however, it was also of importance to find out if one of them was

going to perform significantly better than the other in terms of accuracy and performance, hence the

comparison.

4.2.1. Script for Data Accumulation: build_dataset.py

The first step was to build the dataset, which had to be sufficiently large for the machine learning algo-

rithms to produce meaningful results, and it had to reflect what the signal receiving unit inside the car

might "see" if it became the target of hacking attempts. Therefore, I wrote the build_datset.py

Python script that allowed me to capture however many signals I needed and writes them to a CSV file.

300 captured signals, combining 100 for each of the three transmitters, seemed like a reasonable amount

of data for a proof-of-concept. If more signals were needed, the following few lines of the script would

have to be adjusted accordingly to get the labelling of the data right:

1 # i1 = reference signal (not written as data row)

2 DEF_SIG = "Keyfob" # i2 to i101 = 100

3 if (i >= 102):

4 DEF_SIG = "YARD Stick One" # i102 to i201 = 100

5 if (i >= 202):

6 DEF_SIG = "Rad1o" # i202 to i301 = 100

7 if (i == 302):

8 break

The script expects the user to transmit the provided number of signals from each device consecutively,

without interchanging transmitters during the capture. Otherwise, the labelling would get mixed up.

Simon D. Hasler 30

4. Research Methodology

Also, it should be noted that the keyfob, being the reference transmitter, has to come first and that the

counting of captured signals starts at 2 since the very first captured signal is not stored as a data row but

instead used to write the header of the CSV file with the reference frequencies, i.e., where peaks occurred

in the reference signal.

After that code block, for the most part the build_dataset.py Python script does the same as the

plot_diffs.py script introduced in Subsection 4.1.1, except for the plotting. Vectors containing the

frequency and power level values of peaks in the reference signal are created, and the same is done for

the equivalent positions in the signal that is to be compared with the previously mentioned one.

Once all the required data has been accumulated and processed, the script creates the header for the CSV

dataset file and the data row that will be appended to the dataset.

1 data = []

2 header = []

3 header.append("Label")

4 header.append("Total Peaks")

5 data.append(DEF_SIG)

6 data.append(len(vectors_sig_2_real))

7 for j in range(0, len(vectors_sig_2_cmp)):

8 header.append(str(vectors_sig_2_cmp[j][0]))

9 data.append(vectors_sig_2_cmp[j][1])

10 data_row = dict(zip(header, data))

11 write_to_csv(header, data_row)

Both the header and the created data_row are then passed to the method I wrote for writing data to a

specified CSV file:

1 def write_to_csv(header, data):

2 file_exists = os.path.isfile("signal-data-000.csv")

3

4 with open("signal-data-000.csv", "a") as csv_file:

5 writer = csv.DictWriter(csv_file, fieldnames=header)

6 if not file_exists:

7 writer.writeheader()

8 writer.writerow(data)

Simon D. Hasler 31

4. Research Methodology

To prevent the header from being written to the dataset again and again, the script checks whether the

CSV file already exists, and if that is the case, it can safely assume that the header was written already at

the time the file was created, thus not appending it needlessly.

Now, with the build_dataset.py script ready, building of the dataset could begin. While I did

implement user interaction-based execution control steps in the involved scripts to make this process as

simple as possible, there is still a number of things to be aware of to get it right. Basically, the following

steps were required in the given order:

1. Keyfob data rows:

1.1. Before the build_dataset.py script can be started, a sufficient number of signals

has to be captured by the YARD Stick One using the replay.py script, because once

the former script runs, it will capture every signal it sees, even if a signal is meant to

be captured by another script only. Thus, I run the replay.py script inside a terminal

window and kept ignoring the prompt to switch to transmission mode by just pressing

<enter>. Due to my experiences made during this part of the research work, if n is the

desired number of data rows in the dataset for this device, I recommend capturing n+n/3

signals to be on the safe side as some signals will inevitably get lost during transmission

in step 2.

1.2. The following step involves building of the dataset and it is important to note: the ref-

erence transmitter, regardless of whether it is the keyfob in this research project or an-

other device in a similar project using my scripts, has to come first. I started running

the build_dataset.py script inside a terminal window and also started transmitting

signals from the reference transmitter until the script said that it had written the desired

number of signal data to the CSV file for this particular device. E.g., if the desired number

is 100, ideally, this means pressing the "unlock" button of the keyfob 101 times (the first

signal does not count as it is only used to create the header), however, it is highly unlikely

for any of the devices I used to succeed in transmitting a signal strong enough to exceed

a power level of -10 dB every single time. This is the threshold a signal has to exceed

to be recognized and captured. Therefore, one needs to continue pressing the "unlock"

button until 100 signal data rows have been written, even if it means transmitting signals

110 or 120 times. Also, the build_dataset.py script must not be stopped until the

last device has transmitted its last signal.

2. YARD Stick One data rows:

2.1. At this point, the keyfob was no longer needed. Instead, I started transmitting the captured

Simon D. Hasler 32

4. Research Methodology

signals from YARD Stick One one by one until the build_dataset.py script said

that it had written signal 200 (signals 101 to 200), as that was the number of signals

specified for this device in the code. Figure 4.7 illustrates this. In the left terminal window

the build_dataset.py script is running without any user interaction, while in the

right terminal window the replay.py script constantly asks the user whether they want

to stop transmitting from YARD Stick One, which, if ignored, leads to another signal

being transmitted.

2.2. Afterwards, while the build_dataset.py script should still be left running as there is

one more transmitter device left, the replay.py script may be stopped and the terminal

window it was running in closed. YARD Stick One may be ejected from the USB port of

the machine.

3. Rad1o data rows:

3.1. For transmitting signals from the Rad1o, GNU Radio and the replay_TX.grc pro-

gram introduced in Chapter 3, Subsection 3.2.2 could be used. As the program would

run in a loop anyway, all that was required was to wait for the build_dataset.py

script to tell me that it had written signal data 150, i.e., the last data row, for this device

and stop program execution right afterwards. Figure 4.8 is showing a transmission in

the GNU Radio window1 at the front and the Python script "listening" in the terminal

window at the back.

3.2. Since no more data was going to be written to the CSV file, I could now stop building of

the dataset by pressing <ctrl+C>.

1Due to a bug in the QT GUI of the GNU Radio installation on macOS, the axis and legend are missing in the window

produced by the Frequency Sink block. However, this did not affect the displaying of signals in the frequency spectrum.

Simon D. Hasler 33

4. Research Methodology

Figure 4.7.: Accumulating signal captures from YARD Stick One using both the build_dataset.py and the

replay.py scripts.

Figure 4.8.: Accumulating signal captures from Rad1o using the build_datset.py script and the

replay_TX.grc GNU Radio program.

Building the dataset the way previously described in this subsection results in a CSV file that contains

Simon D. Hasler 34

4. Research Methodology

the individual data rows ordered by device and in the order they were written. This is exactly what the

build_dataset.py script is supposed to produce, however, it does not reflect a realistic scenario in

which a car is "under attack" from various transmitting devices and receives their signals in a mixed and

seemingly random order. Thus, there was one last thing to do before the then final dataset could be fed

to machine learning algorithms: shuffle the rows inside the dataset for random ordering. The desired

result was achieved by entering the code lines listed in Appendix 5.1 into an interactive IPython terminal

Figure 4.9 displays the first few rows of the final dataset as they appear in Microsoft Excel.

Figure 4.9.: The first 10 rows of signal data in the randomly ordered CSV dataset displayed in Microsoft Excel.

What can be told from those few rows is, first, that the header contains a label indicating the transmitter

and the total number of peaks for each signal in the first two columns, and the exact frequency that a peak

occurred at in the reference signal in each subsequent column. And, second, that the data rows starting

at row 2 in the Excel sheet contain, besides the device label and total number of peaks, the exact power

levels that each recorded signal exhibited at the frequencies written in the header.

4.2.2. Script for k -nearest Neighbors Algorithm: kNN_prediction.py

The Scikit-learn framework of the Python programming language provides various classes for all well-

known machine learning algorithms. Consequently, the first part of the kNN_prediction.py script

consists of imports of all the classes needed for the k-nearest Neighbors algorithm:

1 from sklearn.model_selection import train_test_split

2 from sklearn.preprocessing import StandardScaler

3 from sklearn.neighbors import KNeighborsClassifier

4 from sklearn import metrics

5 from sklearn.cross_validation import cross_val_score, LeaveOneOut

6 # ...

In the main() function, first, the CSV dataset is imported through utilization of the Pandas library and

Simon D. Hasler 35

4. Research Methodology

its read_csv()method. The next few lines of the script are essential in interpreting and understanding

the result that the k-NN algorithm will produce for the provided 6-dimensional dataset (n = 6), as I show

in Chapter 5, Section 5.1. What they do is creating a figure that shows n ∗ n subplots, each of which

is either representing the distribution of data points for a particular feature from the dataset, or for two

features if that was the number of features considered by the machine learning algorithm.

1 sns.pairplot(df, hue="Label", palette={"Keyfob": DEF_PINK, "YARD

Stick One": DEF_YELLOW, "Rad1o": DEF_BLUE})↪→

2 plt.savefig("dataset.pdf", dpi="figure", format="pdf")

3 plt.show()

The next step was creating the feature matrix X consisting of a specified number of samples (nS) and

features (nF), where "samples" basically refers to the number of data rows and "features" to the number

of feature columns that shall be used by the k-NN algorithm. As opposed to the usually 2-dimensional

feature matrix, the target vector y is a 1-dimensional array of length nS that stores the quantity that shall

be predicted from the data, i.e., the label in this case.

Since training and test data is required for any machine learning algorithm to learn from, the whole

dataset is split into two parts in a ratio 2/3 to 1/3, the smaller part being the test data.

1 X = np.array(df.ix[:, 1:7]) # 1:2 for the first feature only

2 y = np.array(df["Label"])

3

4 X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.33, random_state=42)↪→

Sometimes, depending on the type of data that is used in machine learning, it can happen that a particular,

dominant feature contributes far more to the result than the other features. This is especially true if one

feature has a particularly broad range of values. To prevent this feature from dominating the algorithm

and ensure that all features contribute approximately proportionally to the final result, a scaler can be

used to normalize the features so that all of them are evaluated uniformly. The next few lines of code

show this:

1 scaler = StandardScaler()

2 scaler.fit(X_train)

3 X_train = scaler.transform(X_train)

4 X_test = scaler.transform(X_test)

Simon D. Hasler 36

4. Research Methodology

From here on, the code follows the standard procedure in machine learning: instantiate the class of the

desired model with all necessary hyperparameters, fit the model to the data, and predict the labels of the

test data points, which are then printed to allow for a comparison with the true labels.

1 knn = KNeighborsClassifier(n_neighbors=3)

2 knn.fit(X_train, y_train)

3 print("X_test:\n{}\n".format(knn.predict(X_test)))

4 print("y_test:\n{}\n".format(y_test))

Once a machine learning model has done its job, it is always interesting to see how well it performed

on the provided data in regards to accuracy. Therefore, the simple accuracy score is calculated using the

respective method from the metrics class, and cross validation is performed. The latter is done by

splitting the whole dataset into five equally sized parts, continuously fit the model to two of them until

all parts have been used at least once, and print the five respective accuracy results. It is also possible

to calculate the mean of them to get one final cross validation accuracy score. Another cross validation

method that is applied is called "LeaveOneOut" (LOOCV). This method essentially does the same as

the one previously explained, with the difference that it does not split the dataset into just five parts, but

takes all rows except for one as training data and the single left out row as test data. It then continues this

process until each single row has been used as test data once.

1 print("Accuracy Score:

{:.6f}%\n".format(metrics.accuracy_score(y_test,

predicted)*100))

↪→

↪→

2 x_val_score = cross_val_score(knn, X, y, cv=5)

3 for i in range(0, len(x_val_score)):

4 print("Cross Validation Score ({}): {:.6f}%\n".format(i+1,

x_val_score[i]*100))↪→

5 l1o_score = cross_val_score(knn, X, y, cv=LeaveOneOut(len(X)))

6 print("\'Leave One Out\' Cross Validation Score:

{:.6f}%\n".format(l1o_score.mean()*100))↪→

The last part of the code prints the classification report and creates the confusion matrix, which I present

and explain in Chapter 5, Section 5.1 for two selected features of the data I am working with.

Simon D. Hasler 37

4. Research Methodology

4.2.3. Script for Support Vector Machine Algorithm: svm_prediction.py

The svm_prediction.py script that utilizes the Support Vector Classifier for predicting signal

sources via machine learning is, for the most part, identical to the previously described kNN_prediction.py

script. However, there is a small number of significant differences that are noteworthy, such as the im-

port of the required svm class from the Scikit-learn framework and its instantiation with the appropriate

hyperparameters.

1 from sklearn import svm

2

3 # ...

4

5 svc = svm.SVC(C=1, kernel="linear", gamma="auto")

After trying a broad range of values for the individual hyperparameters, a linear kernel turned out to be

the best choice for the provided dataset as the different classes proved to be very heterogenous and the

belonging data-points are distributed well enough to separate them by drawing straight lines. This is

clearly visible in Figure 5.2 in Chapter 5.

The γ parameter defines how far the influence of a single training sample reaches, with low values

indicating "far" and high values the opposite. In essence, this means that if the value for γ is set rather

high, the SVC will attempt to draw the class boundaries tightly around all data-points it believes to be

in a certain class. Overfitting problems may ensue due to a too high γ value. The penalty parameter

C of the error term controls the trade-off between classifying the individual data-points correctly and

creating smooth decision boundaries. A higher C value allows the model to select more samples as

support vectors for improved prediction precision [32].

4.3. Implementation of the Signal IDS on a nVidia Jetson TX2

Module

4.3.1. Script for Signal Intrusion Detection: signal_ids.py

This Python script is a combination of all the relevant parts from the previously presented scripts and is

necessary for the final result of this research work. It also represents the software part of the proof-of-

concept and, in the completed system, runs on a nVidia Jetson TX2 module, as described in the following

subsection.

Simon D. Hasler 38

4. Research Methodology

The signal_ids.py script first reads in the data from the shuffled dataset and then replaces all labels

other than "Keyfob" with "Other", the result of which can be seen in Figure 4.10.

1 df = pd.read_csv("signal-data-000_shuffled.csv")

2 df["Label"] = df["Label"].replace(["YARD Stick One", "Rad1o"],

"Other")↪→

3 df.to_csv("signal-data-000_real.csv", index=False)

4 df = pd.read_csv("signal-data-000_real.csv")

5 ref_freqs = np.array(df.columns.values)

The reason for doing this is that it is just not possible to know all devices that can be used for a capture

and replay attack beforehand, or even obtain signal data from them that could be added to the training

data for the Signal IDS. Therefore, the only feasible thing for the Signal IDS to do is to determine whether

a received signal resembles the known keyfob signals such that it may be labelled accordingly, or if it

rather resembles a signal that is already known to originate from a different transmitter, in which case

the unknown signal should be labelled "Other". I elaborate on this issue in Chapter 5, Section 5.2. For a

proof-of-concept, however, I deem this solution sufficient, considering that for a car it is irrelevant which

hacking device may have transmitted an unlock signal. It is only of importance to determine correctly

whether it was the keyfob or not, and perform the appropriate action.

Figure 4.10.: The first 10 rows of signal data with only two different labels displayed in Microsoft Excel.

Since the Signal IDS, once started, should run until it is explicitly stopped by the user, the main part

of the script consists of an infinite loop that is only exited when a keyboard interrupt from the pressed

<ctrl+C> key combination is received. Inside the loop, this Python script, too, listens for signals but

as opposed to the other scripts introduced in this thesis it already recognizes them if they exceed a lower

power level of -15 dB. This was necessary as otherwise too many signals would be missed, and it would

be far from desirable behavior if a car owner had to press the unlock button on their keyfob multiple

times until they succeed in transmitting a strong enough signal.

Simon D. Hasler 39

4. Research Methodology

Next, the script does two distinct things: first, it tries to find the indexes of all peaks of the current signal

above a power level of -20 dB. And, second, it determines the power levels of the current signal at the

frequencies where peaks occurred in the reference signal. The former is necessary to get the total number

of peaks in a signal, which is the first feature in the dataset, whereas the latter is required to obtain values

for the remaining five features, i.e., the reference peak frequencies.

1 power_lvls = 10*log10(Pxx/(sdr.sample_rate/1e6))+10*log10(8/3)

2 indexes = peakutils.indexes(power_lvls, thres=0.25, min_dist=10)

3 power_lvls_max = [i for i in power_lvls[indexes] if i >= -20]

4 check_pw_lvls = np.isin(power_lvls, power_lvls_max)

5 check_freqs = np.isin(freqs, np.float64(ref_freqs[2:7]))

6 p_indexes_max = np.where(check_pw_lvls)

7 f_indexes_max = np.where(check_freqs)

8

9 vectors_sig_real = np.column_stack((freqs[p_indexes_max],

power_lvls[p_indexes_max]))↪→

With all the required data acquired, the signal_ids.py continues to build a data row in the same

form as those already present in the dataset, the only difference being that the new row of the unknown

signal does not yet get a label assigned. That remains to be done by the machine learning algorithm.

1 data = []

2 header = []

3 header.append("Total Peaks")

4 data.append(len(vectors_sig_real))

5 for j in range(0, len(power_lvls[f_indexes_max])):

6 header.append(str(ref_freqs[2:7][j]))

7 data.append(power_lvls[f_indexes_max][j])

8 data_row = dict(zip(header, data))

The remaining part of the for loop takes the entire dataset as training data for the machine learning

algorithm and only the single data row of the unknown signal as test data, scales the features to ensure

uniform evaluation, and ultimately fits the instantiated model to the data. Most of this process has already

been illustrated with explained code samples in Chapter 4, Subsection 4.2.2, which is why only the first

part is shown below:

Simon D. Hasler 40

4. Research Methodology

1 X_train = np.array(df.ix[:, 1:7])

2 y_train = np.array(df["Label"])

3 X_test = np.array([list(data_row.values())])

After finding that the Support Vector Classifier performs significantly better than the k-nearest Neighbor

algorithm in regards to accuracy if features with hardly distinguishable data-points are used, which can be

seen in Chapter 5, Section 5.1, it was the obvious choice for the implementation of the Signal Intrusion

Detection System.

Lastly, once the SVC algorithm has determined the class of a newly received signal, it outputs in the

terminal window what action the car should perform based on the classification result:

1 if (predicted == "Keyfob"):

2 car_do = "unlock"

3 else:

4 car_do = "stay closed"

5 print("\n## SIGNAL SOURCE = {} ==> Car will {}

##\n".format(predicted, car_do))↪→

Figure 4.11 is showing the final Signal IDS in action. Everything the user is required to do is to start the

system, and eventually stop it.

Simon D. Hasler 41

4. Research Methodology

Figure 4.11.: The Signal IDS running in a macOS terminal window on a MacBook Pro mid-2014 model.

4.3.2. Hardware Setup and Final Implementation

The final Signal IDS proof-of-concept had to be as close as possible to something that could actually

be implemented in a real car. Therefore, I researched on what hardware platforms machine learning

algorithms, e.g., for pattern recognition or computer vision, are implemented in modern cars from man-

ufacturers such as Tesla, Volvo, Audi, and Mercedes-Benz. Those manufacturers, and many more, have

all partnered with nVidia to use the Tegra-based Drive PX platform for features such as visually stunning

cockpits and infotainment systems, as well as for the technology that will be driving the first SAE Level

3 autonomous cars [33, 34].

Simon D. Hasler 42

4. Research Methodology

Due to not having any of the Drive PX modules available for this research project, a nVidia Jetson TX2

module from Taiwanese company Aetina that manufactures industrial grade graphics cards and GPGPU

solutions for embedded applications was chosen as alternative hardware platform. From a technical

perspective, the Jetson TX2 is very well suited for AI computing tasks supposed to be performed on an

embedded device, which also makes it a perfect fit for running the Signal IDS. Basically, it is a highly

power-efficient supercomputer on a credit card-sized board, running at only 7.5 watt and featuring a

nVidia Pascal-family GPU with 256 CUDA cores. Memory-wise it is equipped with 8 GB 128 bit

LPDDR4 that allow for a memory bandwidth of 59.7 GB/s [35].

Figure 4.12.: PCB of the credit card-sized nVidia Jetson TX2 module [36].

The Jetson TX2 Board comes with a pre-installed 64-bit Ubuntu 16.04 LTS operating system—nVidia

calls the most recent version as of this writing Linux for Tegra 28.2 or in short L4T 28.2—that makes

it easy to establish an SSH session to the module and control it from another machine. However, as

the Tegra TX2 is a 64-bit ARMv8 processor and there was no Anaconda/Miniconda distribution with

support for that architecture available during this research project, the difficult part was the set-up of a

Python environment with all packages required to run the Signal IDS. I was able to get it working by

manually executing the commands listed in Appendix 5.2.

The first command installs necessary Ubuntu libraries that the systems needs to interact with a RTL-

SDR device connected via USB, and the second one installs the dependencies that the Python frame-

works Matplotlib and Pandas rely on and without which an installation is not even possible. Then, the

Python3 setuptools are used to install pip, the package manager of Python. The next command installs

the frameworks and libraries that are imported in the signal_ids.py Python script. In this step I

tried installing Pandas via pip too, but the installation would not succeed and always ended with error

Simon D. Hasler 43

4. Research Methodology

messages. Thus, in the next command the APT package managing tool of Ubuntu is used to install

Pandas for Python3.

At this point, all the software required by the Signal IDS had been installed but running it resulted in the

error that can be seen in Figure 4.13.

Figure 4.13.: QXcbConnection error caused by Matplotlib not beeing able to connect to any active X server.

The cause of this error was that I was trying to run the Signal IDS on a remote machine, i.e., the Jetson

TX2 module, via an SSH connection, which resulted in Matplotlib not being able to connect to any active

X server. One possible solution would have been to run a local X server and enable X11-forwarding for

the SSH client, so that any plotting output would have been displayed on the local machine. However,

another, simpler solution seemed preferable: adding two lines of code to the script that specify a different,

non-interactive back-end for Matplotlib [37]. It is important to note that those lines have to be placed

before the import of pylab.

1 import matplotlib as mpl

2 mpl.use("Agg")

Another attempt to run the Signal IDS resulted in the error depicted in Figure 4.14.

Figure 4.14.: NumPy attribute error due to an outdated package version.

This one was easy to solve once I had figured out that pip had installed the outdated version 1.11.0 of the

NumPy package, which was a problem insofar as that the isin function was added to NumPy in version

1.13.0. After upgrading the package to the latest version, which is 1.14.3 by the time of this writing, the

Signal IDS could finally be run on the Tegra CPU of the nVidia Jetson TX2 module, as can be seen in

Figure 4.15.

Simon D. Hasler 44

4. Research Methodology

Figure 4.15.: The Signal IDS running on the Tegra CPU of the nVidia Jetson TX2 module.

Figure 4.16 is showing the final hardware setup consisting of the Aetina carrier board equipped with

the nVidia Jetson TX2 module and a passive custom cooling solution right on top of it. The NooElec

NESDR Nano 2+ RTL-SDR is plugged into one of the USB ports of the board to allow the Signal IDS

to listen for signals and capture them.

Simon D. Hasler 45

4. Research Methodology

Figure 4.16.: The Aetina Jetson TX2 Carrier Board equipped with a custom cooling solution and the RTL-SDR

plugged in.

Simon D. Hasler 46

5. Results and Findings

The following section provides a detailed overview of the results obtained from the machine learning

experiments in the previous chapter. It is explained how differing levels of accuracy can be achieved

through careful feature selection, and how each of the two selected machine learning algorithms per-

formed in regards to resource utilization. In the second part of this chapter an overview is given of

various limitations to the machine learning approach that might occur under certain circumstances.

5.1. Prediction Accuracy and Performance

In the field of machine learning, a prediction result with an accuracy above 90% is usually considered

fairly decent for classification tasks. If an algorithm is able to predict labels with an accuracy of 96-

98%, it performs extremely well, although, ultimately, this always depends on the kind of data a machine

learning model is applied to.

It was quite surprising to find that both the k-NN and the SVC algorithms resulted in a prediction pre-

cision of 100% for the provided dataset consisting of 300 data-points, two thirds of which were used

for training and the other third for testing. Figure 5.1 shows the validation scores and the classification

report for k-NN.

Figure 5.1.: k-nearest Neighbor algorithm predicting labels with an accuracy of 100% if all 6 features of the data

are used.

Simon D. Hasler 47

5. Results and Findings

A result such as this always requires further investigation into whether it is truly possible for a given

dataset, and what factors may contribute to achieving such exact predictions. Therefore, the first step

was to create a pair-plot of all features present in the dataset and visualize how the data-points would

scatter if only two selected features were used for classification, all of which can be seen in Figure 5.2.

The bar charts visualize the occurrence of data samples for just one particular feature, and whether

samples belonging to different classes overlap or not.

10

20

To
ta

l P
ea

ks

30

20

43
3.

21
68

74
98

40
64

1

30

20

10

43
4.

20
39

84
37

21
38

8

0

20

43
4.

41
72

65
62

49
63

8

30

20

43
4.

62
91

79
69

02
70

7

10 20
Total Peaks

30

20

43
5.

61
62

89
07

83
45

46

30 20
433.2168749840641

30 20 10
434.2039843721388

0 20
434.4172656249638

30 20
434.6291796902707

30 20
435.61628907834546

Label
Keyfob
YARD Stick One
Rad1o

Figure 5.2.: Distribution of data from the dataset depending on which two features are put in relation to each

other.

What becomes clear immediately is that the data-points of different classes (Keyfob in pink, YARD Stick

One in yellow, and Rad1o in blue) are separated extremely well if the relationship of at least two different

features is taken into account. Only for a small number of individual features, such as "Total Peaks" (bar

chart in the first row/column) and the reference peak frequency of "433.2168749840641" MHz (bar chart

in the second row/column), does overlapping of data-points from different classes seem to occur.

Simon D. Hasler 48

5. Results and Findings

These findings were already giving strong hints as to why the result might have been a prediction

precision of 100% for the data samples in the dataset, however, it was yet unconfirmed that there

was no error in how I was using the machine learning algorithms in the kNN_prediction.py and

svm_prediction.py scripts. If everything was correct, the prediction precision of both algorithms

had to drop significantly if only one of those features with overlapping data-points was used for the

classification, which was achieved by adjusting the following code line accordingly:

1 X = np.array(df.ix[:, 1:2]) # 1:7 for all 6 feature columns

And indeed, as Figure 5.3 is showing, the prediction precision drops to roughly 89% for k-NN if only

the "433.2168749840641" feature is specified in the source code of the kNN_prediction.py script.

The same is true for the SVC, only that this algorithm still produces a very good accuracy score of

approximately 97%.

(a) Accuracy and validation scores of k-NN (b) Accuracy and validation scores of SVC

Figure 5.3.: The prediction precision drops significantly in both algorithms if a single feature with over-

lapping data-points is selected for classification, but much less so for the SVC.

One last things that is very interesting to take a closer look at in regards to accuracy and prediction

precision is which features, if used alone, cause what labels to be predicted wrongly. A heat-map of each

classification result is the best way to visualize this and can be seen in Figure 5.4. The index 0 of the

rows and columns marks the keyfob, 1 the YARD Stick One, and 2 the Rad1o.

Simon D. Hasler 49

5. Results and Findings

0 1 2
predicted value

0
1

2
tru

e
va

lu
e

32 1 0

0 31 0

0 1 34

Confusion Matrix

0

6

12

18

24

30

(a) Feature 1: "Total Peaks"

0 1 2
predicted value

0
1

2
tru

e
va

lu
e

27 6 0

5 26 0

0 0 35

Confusion Matrix

0

6

12

18

24

30

(b) Feature 2: "433.2168749840641"

Figure 5.4.: Confusion matrices of the k-nearest Neighbors algorithm when applied to the "Total Peaks"

and "433.2168749840641" features.

If the k-NN algorithm is allowed to use only the "Total Peaks" feature for its classifications of the data-

points, 32 keyfob signals get classified correctly and only 1 is misclassified as YARD Stick One signal.

All 31 YARD Stick One signals get classified correctly, and while 34 Rad1o signals get classified cor-

rectly too, 1 was wrongly classified as YARD Stick One signal. While this is a fairly good result, it does

not hold if the "433.2168749840641" feature is the only one used for classification.

In this case, only 27 keyfob signals get labelled correctly, while 6 get labelled wrongly as YARD Stick

One signal. It is almost the same for the latter device, with only 26 signals labelled correctly, and 5

labelled as keyfob signals. However, this feature does seem to allow all 35 Rad1o signals to be labelled

correctly.

0 1 2
predicted value

0
1

2
tru

e
va

lu
e

32 0 1

0 33 2

0 0 31

Confusion Matrix

0

6

12

18

24

30

(a) Feature 1: "Total Peaks"

0 1 2
predicted value

0
1

2
tru

e
va

lu
e

29 0 4

0 35 0

1 0 30

Confusion Matrix

0

6

12

18

24

30

(b) Feature 2: "433.2168749840641"

Figure 5.5.: Confusion matrices of the Support Vector Classifier with linear kernel when applied to the

"Total Peaks" and "433.2168749840641" features.

Simon D. Hasler 50

5. Results and Findings

Even with only the "Total Peaks" feature specified, the SVC is able to classify 32 keyfob and 33 YARD

Stick One signals correctly, as can be seen in Figure 5.5. Only 1 keyfob signal gets misclassified as

Rad1o signal, which is also the case for 2 signals from YARD Stick One. The "433.2168749840641"

feature does increase the number of confusions for the SVC too, although not as much as for the k-NN

algorithm. When this feature is used, the SVC classifies only 4 keyfob signals wrongly as Rad1o signals,

and 1 signal of the latter device gets misclassified as keyfob signal.

What is interesting about these results is that the k-nearest Neighbors algorithm seems to get confused

more easily by signals from the keyfob and the YARD Stick One, while the Support Vector Classifier,

on the contrary, seems to have a harder time distinguishing correctly between signals from the keyfob

and the Rad1o. In general, however, the SVC quite obviously produces more accurate results for the

provided dataset than the k-NN algorithm does (8 versus 13 wrong predictions). I would like to stress

again, though, that both algorithms are fully capable of a 100% prediction precision if they are allowed to

use all 6 features of the data for the classification of unknown data samples. Even if one particular feature

would cause confusion, looking at another or, better yet, several others that have clearly distributed data-

points, would result in accurately predicted labels.

While this concluded the research into the validation scores and the classification report, additionally it

was also necessary to examine the performance of both machine learning algorithm since the impact on

available resources was going to influence the choice of hardware for the final proof-of-concept. On Unix

systems, measuring the processor time that the kNN_prediction.py or the svm_prediction.py

script takes to import the dataset and perform all its computations up to the point where the respective

algorithm makes its predictions could be done easily by adding the following lines to the source code:

1 from timeit import time

2

3 # ...

4

5 start_time = time.clock() # put at the beginning of the main()

function↪→

6

7 # ...

8

9 end_time = time.clock() - start_time # put after 'predicted'

variable is assigned the prediction result↪→

10 print("k-NN duration: {}\n".format(end_time))

Simon D. Hasler 51

5. Results and Findings

The processor times on the 2.2 GHz Intel Core i7-4770HQ processor of the MacBook Pro mid-2014

model are 0.005842000000000014 seconds and 0.005716000000000054 seconds for k-NN and SVC,

respectively. It is clear that for a dataset the size of the one used in this research project a powerful CPU

is not a necessity. This might, however, change fast once the dataset starts growing through the addition

of newly captured signals.

Next, the Memory Profiler Python module revealed the memory consumption of each machine learning

script. To use it, the function which shall be profiled needs to be decorated with the profile keyword:

1 @profile

2 def main():

3 # ...

Then, the script could be executed using the following command in the terminal window:

$ python -m memory_profiler kNN_predict.py

Figure 5.6.: Memory consumption of the k-NN algorithm when classifying signal data using all six features.

Simon D. Hasler 52

5. Results and Findings

Figure 5.7.: Memory consumption of the SVC algorithm when classifying signal data using all six features.

The memory consumption of each line of the machine learning scripts, as well as the total consumption

can be seen in Figure 5.6 and Figure 5.7. While both algorithms seem to handle memory quite sparingly

when working on the provided dataset, the k-NN manages with a slightly lesser amount of mebibyte

(115.582 MiB versus 117.473 MiB). As with processor time, memory consumption may rise significantly

with a growing dataset. This will need to be closely monitored when capturing large amounts of new

signals and adding them to the dataset in a field-test or in follow-up projects.

5.2. Limitations to the Machine Learning Approach

The machine learning approach for the Signal IDS that I propose in Chapter 4 works surprisingly well for

a proof-of-concept, however, it does come with certain limitations that need to be taken into consideration

when adapting this approach for a real-world scenario.

For instance, if the Signal IDS observes new signals of devices other than the keyfob, the YARD Stick

One, and the Rad1o, i.e., those currently represented in the dataset, it is highly likely that eventually a

signal from an unknown transmitter will exhibit characteristics far more similar to those of the keyfob

than those of the hacking devices used in this work, thus resulting in a significant increase in false

classification results. I therefore suggest to add captured signals of hacking devices other than the ones I

used as soon as they become known and available, allowing the Signal IDS to learn their characteristics.

Ultimately, the success of the system heavily depends on the maintenance and updating of the dataset it

uses to train the machine learning algorithm on. In a way this is quite similar to what anti-virus software

Simon D. Hasler 53

5. Results and Findings

developers have to do by keeping the virus signatures up-to-date.

A problem that may arise when signal data of new transmitters is added to the dataset is that this new

data may be very similar or even overlap with the data-points of signals from other transmitters already

present in the dataset. As a consequence, the prediction accuracy of the machine learning algorithm may

drop significantly. It is impossible to make a reliable prediction about this. The behavior of the machine

learning algorithm as the dataset grows should be monitored closely, not just for this reason.

With a growing dataset it may even turn out that at some point the Support Vector Classifier is no longer

the best-suited algorithm for the purpose of the Signal IDS. If its performance or accuracy should drop

dramatically, I would suggest to, first, try the SVC with different kernels and other hyperparameters. And,

second, start considering alternative classification algorithms such as the Stochastic Gradient Descent

(SGD) Classifier, or attempt Kernel Approximation.

So far, the CPU performance of the proof-of-concept presented in this research work is excellent and

even capturing signals observed at almost the same time does not present an issue. However, with a

much larger dataset this might change. Eventually, it could become difficult for the Signal IDS to receive

several signals at the same time and still make accurate predictions. This, too, needs to be monitored.

Overall, I would expect an extensive field-test to reveal several flaws or at least some room for improve-

ments, as is natural in any research project, but I am convinced that my proof-of-concept provides a solid

basis to build upon, and that is its true value.

Simon D. Hasler 54

6. Conclusion and Future Work

This chapter concludes the research work by giving an overview of all the steps that were required to

implement a proof-of-concept for a Signal Intrusion Detection System. Additionally, suggestions are

made on how future work could build upon the basis created in this research work to improve the final

result, or attempt a different approach towards the same goal.

6.1. Conclusion

In this research work I have presented a machine learning approach for classifying digital signals based

on their individual characteristics. I started out by using various transmitters in an attempt to replicate a

capture and replay attack on signals from car keyfobs that has become known as "RollJam". An attack

made possible by significant flaws in the KeeLoq rolling code scheme that is implemented in a vast

number of cars manufactured in the last two decades.

To achieve the goal of creating a proof-of-concept for a Signal Intrusion Detection System capable of

distinguishing between signals originating from different transmitters, first, a visual representation of

the signals had to be produced to gain a better understanding of their individual characteristics. After

inspecting a number of different possibilities, the Python programming language quickly turned out to

be the best choice for this research project as it seemed best-suited for the task at hand due to its powerful

libraries and scientific frameworks. In Section 4.1 of the Research Methodology I could already show

that it is indeed possible to detect distinct features in a signal depending on the transmitter it originates

from, thus answering the first research question.

With the knowledge gained by visualizing the signals it was possible to choose suitable features and build

a dataset consisting of equal numbers of captured signals from each transmitter used in this research

project. This dataset is then utilized to train two different machine learning algorithms for classification,

namely the k-nearest Neighbors algorithm and the Support Vector Classifier, which I decided to try both

to compare them and ensure that the best performing and most accurate one would be used in the final

implementation. It turned out that the data-points of the signals in the dataset are distributed so well that

both classification algorithms are able to predict labels of unknown signals with an astonishing accuracy

Simon D. Hasler 55

6. Conclusion and Future Work

of 100%. In Chapter 5, this is proven by presenting a visual representation of the individual features in

the dataset, and it is furthermore shown that the accuracy would drop significantly if only features with

overlapping data-points were used. Also, my findings show that the accuracy drop is far less dramatic

in such scenarios with the Support Vector Classifier, thus qualifying it for the Signal Intrusion Detection

System.

The final software implementation combines reading of the dataset, signal capture, feature extraction,

data assembly, machine learning, and label prediction into one Python script that builds upon the insights

gained into these procedures while working on the scripts I used during the research phase of this project.

At the end of the Research Methodology I explain why the nVidia Jetson TX2 module is the perfect

hardware choice for the final proof-of-concept and show that the aforementioned Python script can be

run on it. The second and third research question are answered at the end of Chapter 4 as well by showing

that the final Signal Intrusion Detection System is serving its purpose as desired, with minimal required

user interaction.

In Section 5.2 of Chapter 5, several limitations to the machine learning approach, which it nevertheless

has, are mentioned. On a final note, subsequently I propose another, quite different machine learning

approach to the same research problem for future work.

6.2. Future Work

6.2.1. Machine Learning for Image Recognition with TensorFlow

The core concept of the machine learning approach presented in this work is to have a classification

algorithm determine whether the values of pre-defined features of new data match those of the same

features from known data. While the features have been carefully selected based on observations made

during various signal comparisons, there is a chance that a computer would classify signals based on

different features, or even a far greater number of features than a human programmer could specify.

Therefore, I propose another, entirely different approach to a Signal IDS for future work that would

allow classifications without pre-defined specifications: image recognition with TensorFlow, Google’s

open-source machine learning framework that is especially useful in the field of language and image

processing.

One possible way to do this would be to, first, build a dataset of images by capturing signals, plotting

every single one of them, and assigning labels to the plots. Then, a neural network can be modelled with

TensorFlow, and through training on the dataset it will learn highly complex relationships between the

specified labels and what it determines as features of the plotted signals. Once the model is trained, its

Simon D. Hasler 56

6. Conclusion and Future Work

performance and accuracy should be evaluated and, if need be, improved by fine-tuning the hyperpa-

rameters and increasing the size of the dataset. Ultimately, the process of the Signal IDS should be very

similar to what is described in Section 4.2 of Chapter 4 in this research work: the dataset should be used

to train the machine learning model, while newly created plots of unknown captured signals serve as test

data on which the algorithm performs its classification. An excellent tutorial that uses the well-known

Iris flowers dataset can be found in the "Develop" section of the TensorFlow website [38]. Another easy-

to-follow tutorial for image recognition with TensorFlow that I would recommend is provided in the

"Tutorials" section of the DataCamp community website [39] and focuses on classifying Belgian traffic

signs.

One thing that may require special consideration is the visual representation of the signals, which should

probably be reduced to nothing more than the signal itself so as to not bias the classification algorithm

with additional numerical data. It is probably also necessary to plot all signals in the same color to

keep the color from becoming a misleading feature for the classification algorithm. I leave it to other

researchers and future work to figure out all that is required to implement a working proof-of-concept

for an image recognition approach.

6.2.2. GPU Accelerated Computing with Python

While the ARMv8 processor of the Jetson TX2 module is achieving reasonable performance in machine

learning on the small dataset used in this research project, the true power of the module lies in the CUDA

capability of its 256-core Pascal GPU. If in future work using the same hardware platform performance

should become an issue, which is likely going to happen when the size of the dataset starts to grow, I

would recommend having a look at GPU usage in Python. As of this writing, there are two promising

open-source projects aimed at GPU accelerated computing in Python: the Numba project [40, 41], which

is supported by Anaconda, Inc., and PyCUDA [42]. Both may help to considerably reduce the training

time of the machine learning model through massively parallelizing computations on the GPU to a degree

that is not possible on any CPU, regardless of the number of its physical and virtual cores. However, this

will also require rewriting parts of the scripts used in this research projects.

Simon D. Hasler 57

A. Python Source Code

A.1. Scripts for Capture, Replay, and Plotting

A.1.1. replay.py

1 #!/Users/simonhasler/miniconda3/bin/python

2

3 from rflib import *

4 import bitstring

5 import sys

6

7 def conf_device(d):

8 d.setMdmModulation(MOD_ASK_OOK)

9 d.setFreq(434420000)

10 d.setMdmSyncMode(0)

11 d.setMdmDRate(4800)

12 d.setMdmChanBW(60000)

13 d.setMdmChanSpc(24000)

14 d.setChannel(0)

15 d.setMaxPower()

16 d.lowball(1)

17

18 #d.printRadioConfig()

19

20 def main():

21 i = 0

22 d = RfCat(idx=0)

23 conf_device(d)

Simon D. Hasler 58

A. Python Source Code

24

25 print "RX"

26 raw_signal = []

27 while True:

28 try:

29 y, t = d.RFrecv(timeout=1, blocksize=255) # original

blocksize is 400↪→

30 signal = y.encode("hex")

31 print str(signal)

32 raw_signal.append(signal)

33 i+=1

34

35 check = raw_input("({}) Type \"tx\" and press <enter>

to start transmitting: ".format(i))↪→

36 if (check != ""):

37 break

38

39 except ChipconUsbTimeoutException:

40 pass

41

42 except KeyboardInterrupt:

43 d.setModeIDLE()

44 print "Bye!"

45 sys.exit()

46 break

47

48 print "\nTX"

49 for i in range(0, len(raw_signal)):

50 check = raw_input("({}) Type \"bye\" and press <enter> to

stop transmitting: ".format(i+1))↪→

51 if (check != ""):

52 break

53 key_packed = bitstring.BitArray(hex=raw_signal[i]).tobytes()

Simon D. Hasler 59

A. Python Source Code

54 d.makePktFLEN(len(key_packed))

55 d.RFxmit(key_packed)

56

57 d.setModeIDLE()

58

59

60 if __name__ == "__main__":

61 main()

A.1.2. plot_diffs.py

1 #!/Users/simonhasler/miniconda3/bin/python

2

3 from rtlsdr import *

4 from pylab import *

5 import peakutils.peak

6 import matplotlib.pyplot as plt

7 import seaborn as sns; sns.set()

8

9 DEF_SIG_1 = "Keyfob Sig1"

10 DEF_SIG_2 = "Keyfob Sig2"

11 DEF_X_OFFSET = 0.005

12 DEF_Y_OFFSET = 10

13 DEF_PINK = "#ff0066"

14 DEF_LILAC = "#9933ff"

15 DEF_BLUE = "#0066ff"

16 DEF_YELLOW = "#ffcc00"

17 DEF_BLACK = "#000000"

18

19 def main():

20 i = 0

21 j = 0

22 sdr = RtlSdr()

23

Simon D. Hasler 60

A. Python Source Code

24 # Configure RTL-SDR device

25 sdr.sample_rate = 2.8e6 # Hz

26 sdr.center_freq = 434.42e6 # Hz

27 sdr.gain = 25

28

29 signals = []

30 while True:

31 raw_samples = sdr.read_samples(1024*1024)

32 raw_power_lvls = 10*log10(var(raw_samples))

33 print(raw_power_lvls)

34

35 if raw_power_lvls >= -10:

36 signals.append(raw_samples)

37 i += 1

38

39 if i == 2:

40 # Set size of plot in inches and space between

subplots↪→

41 plt.subplots(figsize=[9.84, 9.45])

42 plt.subplots_adjust(hspace=0.4)

43

44 # Plot signal of first transmitter

45 plt.subplot(3, 1, 1)

46 plt.title("Power Spectral Density Comparison")

47 Pxx_1, freqs_1 = plt.psd(signals[0], NFFT=2048,

Fs=sdr.sample_rate/1e6, Fc=sdr.center_freq/1e6,

scale_by_freq=True, color=DEF_PINK,

label=DEF_SIG_1)

↪→

↪→

↪→

48 plt.legend()

49 plt.xlabel("Frequency (MHz)")

50 plt.ylabel("PSD (dB/Hz)")

51

52 # Plot signal of second transmitter

Simon D. Hasler 61

A. Python Source Code

53 plt.subplot(3, 1, 2)

54 Pxx_2, freqs_2 = plt.psd(signals[1], NFFT=2048,

Fs=sdr.sample_rate/1e6, Fc=sdr.center_freq/1e6,

scale_by_freq=True, color=DEF_LILAC,

label=DEF_SIG_2)

↪→

↪→

↪→

55 plt.legend()

56 plt.xlabel("Frequency (MHz)")

57 plt.ylabel("PSD (dB/Hz)")

58

59 # Plot overlay of both received signals

60 plt.subplot(3, 1, 3)

61 plt.psd(signals[0], NFFT=2048,

Fs=sdr.sample_rate/1e6, Fc=sdr.center_freq/1e6,

scale_by_freq=True, color=DEF_PINK,

label=DEF_SIG_1)

↪→

↪→

↪→

62 plt.psd(signals[1], NFFT=2048,

Fs=sdr.sample_rate/1e6, Fc=sdr.center_freq/1e6,

scale_by_freq=True, color=DEF_LILAC,

label=DEF_SIG_2)

↪→

↪→

↪→

63 plt.legend()

64 plt.xlabel("Frequency (MHz)")

65 plt.ylabel("PSD (dB/Hz)")

66

67 plt.savefig("sig_comparison.pdf", dpi="figure",

format="pdf")↪→

68 plt.show()

69

70 # Detect peaks in signals and print their

coordinates↪→

71 power_lvls_1 = 10*log10(Pxx_1/(sdr.sample_rate/1e6) c

)+10*log10(8/3)↪→

72 power_lvls_2 = 10*log10(Pxx_2/(sdr.sample_rate/1e6) c

)+10*log10(8/3)↪→

Simon D. Hasler 62

A. Python Source Code

73 indexes_1 = peakutils.indexes(power_lvls_1,

thres=0.25, min_dist=10)↪→

74 indexes_2 = peakutils.indexes(power_lvls_2,

thres=0.25, min_dist=10)↪→

75 print("\nSIGNAL PEAKS\n")

76 print("Peaks in Signal 1\nX: {}\n\nY:

{}\n".format(freqs_1[indexes_1],

power_lvls_1[indexes_1]))

↪→

↪→

77 print("Peaks in Signal 2\nX: {}\n\nY:

{}\n".format(freqs_2[indexes_2],

power_lvls_2[indexes_2]))

↪→

↪→

78 power_lvls_1_max = [i for i in

power_lvls_1[indexes_1] if i >= -20]↪→

79 power_lvls_2_max = [i for i in

power_lvls_2[indexes_2] if i >= -20]↪→

80 check_1 = np.isin(power_lvls_1, power_lvls_1_max)

81 check_2 = np.isin(power_lvls_2, power_lvls_2_max)

82 indexes_1_max = np.where(check_1)

83 indexes_2_max = np.where(check_2)

84 print("Highest Peaks in Signal 1:\nX: {}\n\nY:

{}\n".format(freqs_1[indexes_1_max],

power_lvls_1[indexes_1_max]))

↪→

↪→

85 print("Highest Peaks in Signal 2:\nX: {}\n\nY:

{}\n".format(freqs_2[indexes_2_max],

power_lvls_2[indexes_2_max]))

↪→

↪→

86

87 # Create vectors from single coordinates

88 vectors_sig_1 =

np.column_stack((freqs_1[indexes_1_max],

power_lvls_1[indexes_1_max]))

↪→

↪→

89 vectors_sig_2_cmp =

np.column_stack((freqs_2[indexes_1_max],

power_lvls_2[indexes_1_max]))

↪→

↪→

Simon D. Hasler 63

A. Python Source Code

90 vectors_sig_2_real =

np.column_stack((freqs_2[indexes_2_max],

power_lvls_2[indexes_2_max]))

↪→

↪→

91 print("Vector 2 reference frequency

comparison:\n{}\n".format(vectors_sig_2_cmp))↪→

92 print("Vector 2 real peak

frequencies:\n{}\n".format(vectors_sig_2_real))↪→

93

94 plt.subplots(figsize=[9.84, 5.90])

95 plt.subplots_adjust(hspace=0.4, wspace=0.4)

96

97 # Zoom in on overlay of most significant peaks

98 for i in range(0, min(len(vectors_sig_1),

len(vectors_sig_2_real))):↪→

99 plt.subplot(2, 3, i+1)

100 plt.suptitle(r"Most significant Peaks from

$f_c-f_s/2$ to $f_c+f_s/2$")↪→

101 plt.title("Peak {}".format(i+1))

102 plt.psd(signals[0], NFFT=2048,

Fs=sdr.sample_rate/1e6,

Fc=sdr.center_freq/1e6, scale_by_freq=True,

color=DEF_PINK)

↪→

↪→

↪→

103 plt.psd(signals[1], NFFT=2048,

Fs=sdr.sample_rate/1e6,

Fc=sdr.center_freq/1e6, scale_by_freq=True,

color=DEF_LILAC)

↪→

↪→

↪→

104 power_mean = np.mean(np.column_stack((vectors_s c

ig_1[i][1],

vectors_sig_2_cmp[i][1])))

↪→

↪→

105 plt.xlim(vectors_sig_1[i][0]-DEF_X_OFFSET,

vectors_sig_1[i][0]+DEF_X_OFFSET)↪→

106 plt.ylim(power_mean-DEF_Y_OFFSET,

power_mean+DEF_Y_OFFSET)↪→

Simon D. Hasler 64

A. Python Source Code

107 j=i

108 if (min(len(vectors_sig_1),

len(vectors_sig_2_real)) ==

len(vectors_sig_1)): # vector_sig_1 is the

smaller list

↪→

↪→

↪→

109 while (j < len(vectors_sig_2_real)-1 and

(vectors_sig_1[i][0] <

vectors_sig_2_real[j][0]-DEF_X_OFFSET*2

or vectors_sig_1[i][0] > vectors_sig_2_ c

real[j][0]+DEF_X_OFFSET*2)):

↪→

↪→

↪→

↪→

110 j+=1

111 plt.axvline(x=vectors_sig_1[i][0],

linewidth=1, color=DEF_BLACK)↪→

112 plt.axvline(x=vectors_sig_2_real[j][0],

linewidth=1, color=DEF_BLACK)↪→

113 print("i = {}\nj = {}\nFREQ_1: {}\nFREQ_2:

{}\n\n".format(i, j,

vectors_sig_1[i][0],

vectors_sig_2_real[j][0])) # DEBUG

OUTPUT

↪→

↪→

↪→

↪→

114 elif (min(len(vectors_sig_1),

len(vectors_sig_2_real)) ==

len(vectors_sig_2_real)): #

vector_sig_2_real is the smaller signal

↪→

↪→

↪→

115 while (j < len(vectors_sig_1)-1 and

(vectors_sig_2_real[i][0] <

vectors_sig_1[j][0]-DEF_X_OFFSET*2 or

vectors_sig_2_real[i][0] >

vectors_sig_1[j][0]+DEF_X_OFFSET*2)):

↪→

↪→

↪→

↪→

116 j+=1

117 plt.axvline(x=vectors_sig_1[j][0],

linewidth=1, color=DEF_BLACK)↪→

Simon D. Hasler 65

A. Python Source Code

118 plt.axvline(x=vectors_sig_2_real[i][0],

linewidth=1, color=DEF_BLACK)↪→

119 print("FREQ_1: {}\nFREQ_2:

{}\n\n".format(vectors_sig_1[j][0],

vectors_sig_2_real[i][0])) # DEBUG

OUTPUT

↪→

↪→

↪→

120 plt.xlabel("MHz")

121 plt.ylabel("dB/Hz)")

122

123 # Show plot and save result as PDF

124 plt.savefig("peak_comparison.pdf", dpi="figure",

format="pdf")↪→

125 plt.show()

126

127 break

128

129

130 if __name__ == "__main__":

131 main()

A.2. Script for Data Accumulation

A.2.1. build_dataset.py

1 #!/Users/simonhasler/miniconda3/bin/python

2

3 from rtlsdr import *

4 from pylab import *

5 import sys

6 import os.path

7 import csv

8 import peakutils.peak

9 import matplotlib.pyplot as plt

10

Simon D. Hasler 66

A. Python Source Code

11 DEF_SIG = "" # "Keyfob", "YARD Stick One", "Rad1o"

12

13 def write_to_csv(header, data):

14 file_exists = os.path.isfile("signal-data-000.csv")

15

16 with open("signal-data-000.csv", "a") as csv_file:

17 writer = csv.DictWriter(csv_file, fieldnames=header)

18 if not file_exists:

19 writer.writeheader()

20 writer.writerow(data)

21

22

23 def main():

24 i = 0

25 j = 0

26 sdr = RtlSdr()

27

28 # Configure RTL-SDR device

29 sdr.sample_rate = 2.8e6 # Hz

30 sdr.center_freq = 434.42e6 # Hz

31 sdr.gain = 25

32

33 signals = []

34 while True:

35 try:

36 raw_samples = sdr.read_samples(1024*1024)

37 raw_power_lvls = 10*log10(var(raw_samples))

38 print(raw_power_lvls)

39

40 if raw_power_lvls >= -10:

41 signals.append(raw_samples)

42 i+=1

43

Simon D. Hasler 67

A. Python Source Code

44 # i1 = reference signal (not written as data row)

45 DEF_SIG = "Keyfob" # i2 to i51 = 50

46 if (i >= 52):

47 DEF_SIG = "YARD Stick One" # i52 to i101 = 50

48 if (i >= 102):

49 DEF_SIG = "Rad1o" # i102 to i151 = 50

50 if (i == 152):

51 break

52

53 if (i == 2): # Sig0, Sig1

54 Pxx_1, freqs_1 = plt.psd(signals[i-2],

NFFT=2048, Fs=sdr.sample_rate/1e6,

Fc=sdr.center_freq/1e6, scale_by_freq=True)

↪→

↪→

55 Pxx_2, freqs_2 = plt.psd(signals[i-1],

NFFT=2048, Fs=sdr.sample_rate/1e6,

Fc=sdr.center_freq/1e6, scale_by_freq=True)

↪→

↪→

56 elif (i > 2): # Sig3 and following

57 Pxx_1, freqs_1 = plt.psd(signals[0], NFFT=2048,

Fs=sdr.sample_rate/1e6,

Fc=sdr.center_freq/1e6, scale_by_freq=True)

↪→

↪→

58 Pxx_2, freqs_2 = plt.psd(signals[i-1],

NFFT=2048, Fs=sdr.sample_rate/1e6,

Fc=sdr.center_freq/1e6, scale_by_freq=True)

↪→

↪→

59

60 if (i >= 2):

61 # Detect peaks in signals

62 power_lvls_1 = 10*log10(Pxx_1/(sdr.sample_rate/ c

1e6))+10*log10(8/3)↪→

63 power_lvls_2 = 10*log10(Pxx_2/(sdr.sample_rate/ c

1e6))+10*log10(8/3)↪→

64 indexes_1 = peakutils.indexes(power_lvls_1,

thres=0.25, min_dist=10)↪→

Simon D. Hasler 68

A. Python Source Code

65 indexes_2 = peakutils.indexes(power_lvls_2,

thres=0.25, min_dist=10)↪→

66 power_lvls_1_max = [i for i in

power_lvls_1[indexes_1] if i >= -20]↪→

67 power_lvls_2_max = [i for i in

power_lvls_2[indexes_2] if i >= -20]↪→

68 check_1 = np.isin(power_lvls_1,

power_lvls_1_max)↪→

69 check_2 = np.isin(power_lvls_2,

power_lvls_2_max)↪→

70 indexes_1_max = np.where(check_1)

71 indexes_2_max = np.where(check_2)

72

73 # Create vectors from single coordinates

74 vectors_sig_1 =

np.column_stack((freqs_1[indexes_1_max],

power_lvls_1[indexes_1_max]))

↪→

↪→

75 vectors_sig_2_cmp =

np.column_stack((freqs_2[indexes_1_max],

power_lvls_2[indexes_1_max]))

↪→

↪→

76 vectors_sig_2_real =

np.column_stack((freqs_2[indexes_2_max],

power_lvls_2[indexes_2_max]))

↪→

↪→

77

78 # Build data row and write it to CSV file

79 data = []

80 header = []

81 header.append("Label")

82 header.append("Total Peaks")

83 data.append(DEF_SIG)

84 data.append(len(vectors_sig_2_real))

85 for j in range(0, len(vectors_sig_2_cmp)):

86 header.append(str(vectors_sig_2_cmp[j][0]))

Simon D. Hasler 69

A. Python Source Code

87 data.append(vectors_sig_2_cmp[j][1])

88 data_row = dict(zip(header, data))

89 write_to_csv(header, data_row)

90

91 print("## Signal data {} written for {}

##\n".format(i-1, DEF_SIG)) # DEBUG OUTPUT↪→

92

93 except KeyboardInterrupt:

94 print("Bye!")

95 sys.exit()

96 break

97

98

99 if __name__ == "__main__":

100 main()

A.3. Scripts for Classification

A.3.1. kNN_prediction.py

1 #!/Users/simonhasler/miniconda3/bin/python

2

3 from sklearn.model_selection import train_test_split

4 from sklearn.preprocessing import StandardScaler

5 from sklearn.neighbors import KNeighborsClassifier

6 from sklearn import metrics

7 from sklearn.cross_validation import cross_val_score, LeaveOneOut

8 import pandas as pd

9 import numpy as np

10 import matplotlib.pyplot as plt

11 import seaborn as sns; sns.set(font_scale=1.4)

12

13 DEF_PINK = "#ff0066"

14 DEF_BLUE = "#0066ff"

Simon D. Hasler 70

A. Python Source Code

15 DEF_YELLOW = "#ffcc00"

16

17 def main():

18 # Load data

19 df = pd.read_csv("signal-data-000_shuffled.csv")

20 print("Columns:\n{}\n".format(df.columns.values))

21 #print("First 10 rows of the

dataset:\n{}\n".format(df.head(10))) # DEBUG OUTPUT↪→

22

23 # Plot dataset and save result as PDF

24 sns.pairplot(df, hue="Label", palette={"Keyfob": DEF_PINK,

"YARD Stick One": DEF_YELLOW, "Rad1o": DEF_BLUE})↪→

25 plt.savefig("dataset.pdf", dpi="figure", format="pdf")

26 plt.show()

27

28 # Create feature matrix X [n_samples, n_features] and

target array y [n_samples]↪→

29 X = np.array(df.ix[:, 2:3]) # 1:7 for all 6 feature columns

30 y = np.array(df["Label"])

31

32 # Split into train and test data

33 X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.33, random_state=42)↪→

34

35 # Scale features so that all of them can be uniformly

evaluated↪→

36 scaler = StandardScaler()

37 scaler.fit(X_train)

38 X_train = scaler.transform(X_train)

39 X_test = scaler.transform(X_test)

40

41 # Instantiate class of learning model (k = 3)

42 knn = KNeighborsClassifier(n_neighbors=3)

Simon D. Hasler 71

A. Python Source Code

43

44 # Fit the model to the data

45 knn.fit(X_train, y_train)

46

47 predicted = knn.predict(X_test)

48

49 # Predict the label of X_test

50 print("X_test:\n{}\n".format(predicted))

51

52 # Print y_test to check the results

53 print("y_test:\n{}\n".format(y_test))

54

55 # Print accuracy and cross validation scores

56 print("Accuracy Score:

{:.6f}%\n".format(metrics.accuracy_score(y_test,

predicted)*100))

↪→

↪→

57 x_val_score = cross_val_score(knn, X, y, cv=5)

58 for i in range(0, len(x_val_score)):

59 print("Cross Validation Score ({}):

{:.6f}%\n".format(i+1, x_val_score[i]*100))↪→

60 l1o_score = cross_val_score(knn, X, y,

cv=LeaveOneOut(len(X)))↪→

61 print("\'Leave One Out\' Cross Validation Score:

{:.6f}%\n".format(l1o_score.mean()*100))↪→

62

63 # Print the classification report of y_test and predicted

64 print(metrics.classification_report(y_test, predicted))

65

66 # Print the confusion matrix

67 plt.title("Confusion Matrix")

68 matrix = metrics.confusion_matrix(y_test, predicted,

labels=["Keyfob", "YARD Stick One", "Rad1o"])↪→

Simon D. Hasler 72

A. Python Source Code

69 sns.heatmap(matrix, square=True, annot=True, cbar=True,

cmap="coolwarm")↪→

70 plt.xlabel("predicted value")

71 plt.ylabel("true value")

72 plt.savefig("confusion_matrix_kNN.pdf", dpi="figure",

format="pdf")↪→

73 plt.show()

74

75

76 if __name__ == "__main__":

77 main()

A.3.2. svm_prediction.py

1 #!/Users/simonhasler/miniconda3/bin/python

2

3 from sklearn.model_selection import train_test_split

4 from sklearn.preprocessing import StandardScaler

5 from sklearn import svm

6 from sklearn import metrics

7 from sklearn.cross_validation import cross_val_score, LeaveOneOut

8 import pandas as pd

9 import numpy as np

10 import matplotlib.pyplot as plt

11 import seaborn as sns; sns.set(font_scale=1.4)

12

13 DEF_PINK = "#ff0066"

14 DEF_BLUE = "#0066ff"

15 DEF_YELLOW = "#ffcc00"

16

17 def main():

18 # Load dataset

19 df = pd.read_csv("signal-data-000_shuffled.csv")

20 print("Columns:\n{}\n".format(df.columns.values))

Simon D. Hasler 73

A. Python Source Code

21 #print("First 10 rows of the

dataset:\n{}\n".format(df.head(10))) # DEBUG OUTPUT↪→

22

23 # Plot dataset and save result as PDF

24 sns.pairplot(df, hue="Label", palette={"Keyfob": DEF_PINK,

"YARD Stick One": DEF_YELLOW, "Rad1o": DEF_BLUE})↪→

25 plt.savefig("dataset.pdf", dpi="figure", format="pdf")

26 plt.show()

27

28 # Create design matrix X and target vector y

29 X = np.array(df.ix[:, 2:3]) # 1:7 for all 6 feature columns

30 y = np.array(df["Label"])

31

32 # Split into train and test data

33 X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.33, random_state=42)↪→

34

35 # Scale features so that all of them can be uniformly evaluated

36 scaler = StandardScaler()

37 scaler.fit(X_train)

38 X_train = scaler.transform(X_train)

39 X_test = scaler.transform(X_test)

40

41 # Instantiate class of learning model

42 svc = svm.SVC(C=1, kernel="linear", gamma="auto")

43

44 # Fit the model to the data

45 svc.fit(X_train, y_train)

46

47 predicted = svc.predict(X_test)

48

49 # Predict the label of X_test

50 print("X_test:\n{}\n".format(predicted))

Simon D. Hasler 74

A. Python Source Code

51

52 # Print y_test to check the results

53 print("y_test:\n{}\n".format(y_test))

54

55 # Print accuracy and cross validation scores

56 print("Accuracy Score:

{:.6f}%\n".format(metrics.accuracy_score(y_test,

predicted)*100))

↪→

↪→

57 x_val_score = cross_val_score(svc, X, y, cv=5)

58 for i in range(0, len(x_val_score)):

59 print("Cross Validation Score ({}): {:.6f}%\n".format(i+1,

x_val_score[i]*100))↪→

60 l1o_score = cross_val_score(svc, X, y, cv=LeaveOneOut(len(X)))

61 print("\'Leave One Out\' Cross Validation Score:

{:.6f}%\n".format(l1o_score.mean()*100))↪→

62

63 # Print the classification report of y_test and predicted

64 print(metrics.classification_report(y_test, predicted))

65

66 # Print the confusion matrix

67 plt.title("Confusion Matrix")

68 matrix = metrics.confusion_matrix(y_test, predicted)

69 sns.heatmap(matrix, square=True, annot=True, cbar=True,

cmap="coolwarm")↪→

70 plt.xlabel("predicted value")

71 plt.ylabel("true value")

72 plt.savefig("confusion_matrix_svm.pdf", dpi="figure",

format="pdf")↪→

73 plt.show()

74

75

76 if __name__ == "__main__":

77 main()

Simon D. Hasler 75

A. Python Source Code

A.4. Script for the Signal Intrusion Detection System

A.4.1. signal_ids.py

1 #!/Users/simonhasler/miniconda3/bin/python

2

3 from rtlsdr import *

4 from pylab import *

5 from sklearn.model_selection import train_test_split

6 from sklearn.preprocessing import StandardScaler

7 from sklearn import svm

8 import peakutils.peak

9 import time

10 import pandas as pd

11 import numpy as np

12

13 def main():

14 sdr = RtlSdr()

15

16 # Configure RTL-SDR device

17 sdr.sample_rate = 2.8e6 # Hz

18 sdr.center_freq = 434.42e6 # Hz

19 sdr.gain = 25

20

21 # Load data, replace device specific labels, and retrieve peak

frequencies of reference signal↪→

22 df = pd.read_csv("signal-data-000_shuffled.csv")

23 df["Label"] = df["Label"].replace(["YARD Stick One", "Rad1o"],

"Other")↪→

24 df.to_csv("signal-data-000_real.csv", index=False)

25 df = pd.read_csv("signal-data-000_real.csv")

26 ref_freqs = np.array(df.columns.values)

27

28 print("##\n"

Simon D. Hasler 76

A. Python Source Code

29 "##\tSIGNAL INTRUSION DETECTION SYSTEM\t##\n"

30 "##\t\t\t\t\t\t##\n"

31 "##\tCreator: Simon Hasler\t\t\t##\n"

32 "##\tProject: Master Thesis\t\t\t##\n"

33 "##\tInstitution: FH St. Poelten\t\t##\n"

34 "##\tCourse: Information Security\t\t##\n"

35 "##\t\t\t\t\t\t##\n"

36 "##\tSystem start: {} {}\t##\n"

37 "##\n\n"

38 "==> Press <ctrl+C> to exit the

SIDS.\n".format(time.strftime("%d/%m/%Y"),

time.strftime("%I:%M:%S")))

↪→

↪→

39

40 while True:

41 try:

42 raw_sample = sdr.read_samples(1024*1024)

43 raw_power_lvls = 10*log10(var(raw_sample))

44 print(raw_power_lvls)

45

46 if raw_power_lvls >= -15:

47 signal = raw_sample

48

49 Pxx, freqs = plt.psd(signal, NFFT=2048,

Fs=sdr.sample_rate/1e6, Fc=sdr.center_freq/1e6,

scale_by_freq=True)

↪→

↪→

50

51 # Retrieve power levels at x coordinates of

reference peaks↪→

52 power_lvls = 10*log10(Pxx/(sdr.sample_rate/1e6))+10 c

*log10(8/3)↪→

53 indexes = peakutils.indexes(power_lvls, thres=0.25,

min_dist=10)↪→

Simon D. Hasler 77

A. Python Source Code

54 power_lvls_max = [i for i in power_lvls[indexes] if

i >= -20]↪→

55 check_pw_lvls = np.isin(power_lvls, power_lvls_max)

56 check_freqs = np.isin(freqs,

np.float64(ref_freqs[2:7]))↪→

57 p_indexes_max = np.where(check_pw_lvls)

58 f_indexes_max = np.where(check_freqs)

59

60 # Create vectors from single coordinates

61 vectors_sig_real =

np.column_stack((freqs[p_indexes_max],

power_lvls[p_indexes_max]))

↪→

↪→

62

63 # Build data row for newly cpatured signal

64 data = []

65 header = []

66 header.append("Total Peaks")

67 data.append(len(vectors_sig_real))

68 for j in range(0, len(power_lvls[f_indexes_max])):

69 header.append(str(ref_freqs[2:7][j]))

70 data.append(power_lvls[f_indexes_max][j])

71 data_row = dict(zip(header, data))

72

73 # Create design matrix X and target vector y

74 X_train = np.array(df.ix[:, 1:7])

75 y_train = np.array(df["Label"])

76 X_test = np.array([list(data_row.values())])

77

78 # Scale features so that all of them can be

uniformly evaluated↪→

79 scaler = StandardScaler()

80 scaler.fit(X_train)

81 X_train = scaler.transform(X_train)

Simon D. Hasler 78

A. Python Source Code

82 X_test = scaler.transform(X_test)

83

84 # Instantiate class of learning model and fit the

model to the data↪→

85 svc = svm.SVC(C=1, kernel="linear", gamma="auto")

86 svc.fit(X_train, y_train)

87 predicted = svc.predict(X_test)

88

89 if (predicted == "Keyfob"):

90 car_do = "unlock"

91 else:

92 car_do = "stay closed"

93 print("\n## SIGNAL SOURCE = {} ==> Car will {}

##\n".format(predicted, car_do))↪→

94

95 except KeyboardInterrupt:

96 print("\n## c

####\n"↪→

97 "##\tSystem exit: {} {}\t##\n"

98 "## c

".format(time.strftime("%d/%m/%Y"),

time.strftime("%I:%M:%S")))

↪→

↪→

99 sys.exit()

100 break

101

102

103 if __name__ == "__main__":

104 main()

A.5. IPython and Terminal Commands

A.5.1. Commands for Shuffling the Rows of the Dataset

import pandas as pd

Simon D. Hasler 79

A. Python Source Code

df = pd.read_csv("signal-data-000.csv")

ds = df.sample(frac=1)

ds.to_csv("signal-data-000_shuffled.csv", index=None)

A.5.2. Commands for Installation of the Python Requirements on L4T 28.2

$ sudo apt-get install libusb-1.0-0-dev librtlsdr-dev libatlas-base-dev

gfortran

$ sudo apt-get build-dep python-matplotlib python-pandas

$ sudo easy_install3 -U pip

$ pip install numpy scipy matplotlib scikit-learn PeakUtils --user

$ sudo apt-get install python3-pandas

$ pip install numpy --upgrade --user

Simon D. Hasler 80

List of Figures

3.1. Car receiver unit receive window . 6

3.2. NooElec NESDR Nano 2+ . 7

3.3. Škoda Fabia II 2008 model keyfob signal in MATLAB Simulink 8

3.4. Škoda Fabia II 2008 model keyfob signal in GQRX . 9

3.5. Rad1o Badge . 10

3.6. GNU Radio receive model . 10

3.7. Frequency domain and Time domain . 11

3.8. GNU Radio transmit flow graph . 12

3.9. Rad1o signal in MATLAB Simulink . 12

3.10. Rad1o signal in GQRX . 13

3.11. YARD Stick One . 14

3.12. YARD Stick One signal in MATLAB Simulink . 15

3.13. YARD Stick One signal in GQRX . 15

3.14. Raspberry Pi 3 Model B . 16

4.1. Comparison of keyfob signals . 21

4.2. Comparison of peaks from keyfob signals . 25

4.3. Comparison of signals from keyfob and YARD Stick One 26

4.4. Comparison of peaks from keyfob and YARD Stick One signals 27

4.5. Comparison of signals from keyfob and Rad1o . 28

4.6. Comparison of peaks from keyfob and Rad1o signals 29

4.7. Accumulating signal captures from YARD Stick One 34

4.8. Accumulating signal captures from Rad1o . 34

4.9. Randomly ordered data rows in dataset . 35

4.10. Dataset labels reduced to two . 39

4.11. The Signal IDS in action . 42

4.12. nVidia Jetson TX2 . 43

Simon D. Hasler 81

List of Figures

4.13. QXcbConnection Error . 44

4.14. NumPy Attribute Error . 44

4.15. Signal IDS on nVidia Tegra CPU . 45

4.16. Aetina Jetson TX2 Carrier Board . 46

5.1. k-NN prediction accuracy . 47

5.2. Signals Dataset . 48

5.3. Prediction Precision . 49

5.4. Confusion Matrices for Feature 1 . 50

5.5. Confusion Matrices for Feature 2 . 50

5.6. k-NN Memory Consumption . 52

5.7. SVM Memory Consumption . 53

Simon D. Hasler 82

Bibliography

[1] F. D. Garcia, D. Oswald, P. Pavlidès, and T. Kasper, “Lock It and Still Lose It—On the (In)Security

of Automotive Remote Keyless Entry Systems,” in 25th USENIX Security Symposium (USENIX

Security 16). Montreal, Canada: USENIX Association, August 2016.

[2] A. Greenberg, “A New Wireless Hack Can Unlock 100 Million Volkswagens,” August

2016. [Online]. Available: https://www.wired.com/2016/08/oh-good-new-hack-can-unlock-100-

million-volkswagens/

[3] R. Verdult, F. D. Garcia, and J. Balasch, “Gone in 360 Seconds - Hijacking with Hitag2,” in 21st

USENIX Security Symposium (USENIX Security 12). Montreal, Canada: USENIX Association,

August 2012.

[4] A. Francillon, B. Danev, and S. Capkun, “Relay Attacks on Passive Keyless Entry and Start Systems

in Modern Cars,” in Network and Distributed System Security Symposium 2011 (NDSS 2011). San

Diego, California, USA: NDSS, January 2011.

[5] S. Kamkar, “Drive it like you hacked it,” in DEF CON 23. Las Vegas: Samy Kamkar, 2015.

[6] DEFCONConference, “DEF CON 23 - Samy Kamkar - Drive it like you Hacked

it: New Attacks and Tools to Wireles,” December 2015. [Online]. Available: https:

//www.youtube.com/watch?v=UNgvShN4USU

[7] A. Greenberg, “This Hacker’s Tiny Device Unlocks Cars And Opens Garages,” June 2015. [Online].

Available: https://www.wired.com/2015/08/hackers-tiny-device-unlocks-cars-opens-garages/

[8] C. News, “High-tech car theft: How to hack a car,” April 2016. [Online]. Available:

https://www.youtube.com/watch?v=ARrlhlQiFzM

[9] Microchip, MCS3142 Dual KEELOQ® Technology Encoder Data Sheet, MICROCHIP, Microchip

Technology Inc., 2355 West Chandler Blvd., Chandler, Arizona, USA 85224-6199, March 2014.

Simon D. Hasler 83

https://www.wired.com/2016/08/oh-good-new-hack-can-unlock-100-million-volkswagens/
https://www.wired.com/2016/08/oh-good-new-hack-can-unlock-100-million-volkswagens/
https://www.youtube.com/watch?v=UNgvShN4USU
https://www.youtube.com/watch?v=UNgvShN4USU
https://www.wired.com/2015/08/hackers-tiny-device-unlocks-cars-opens-garages/
https://www.youtube.com/watch?v=ARrlhlQiFzM

Bibliography

[10] ——, KEELOQ® Code Hopping Encoder, MICROCHIP, Microchip Technology Inc., 2355 West

Chandler Blvd., Chandler, Arizona, USA 85224-6199, October 2001.

[11] R. W. Stewart, K. W. Barlee, D. S. W. Atkinson, and L. H. Crockett, Software Defined Radio using

MATLAB & Simulink and the RTL-SDR, 1st ed. Glasgow, Scotland, UK: Strathclyde Academic

Media, September 2015.

[12] Realtek Semiconductor Corp., “Rtl2832u,” Februray 2018. [Online]. Available: http://www.realtek.

com.tw/products/productsView.aspx?Langid=1&PFid=35&Level=4&Conn=3&ProdID=257

[13] NooElec Inc., “NooElec NESDR Nano 2+,” February 2018. [Online]. Available: http:

//www.nooelec.com/store/sdr/sdr-receivers/nesdr/nesdr-nano2-plus.html

[14] “Welcome to the CCCamp 2015 rad1o Badge Wiki,” August 2015. [Online]. Available:

https://rad1o.badge.events.ccc.de

[15] M. Ossmann, “HackRF One,” 2016. [Online]. Available: https://greatscottgadgets.com/hackrf/

[16] ——, “Software Defined Radio with HackRF, Lesson 11.” [Online]. Available: https:

//greatscottgadgets.com/sdr/11/

[17] Phonical, “Fft-time-frequency-view,” By Phonical (Own work) [CC BY-SA 4.0

(https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons, November

2017. [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/6/61/FFT-Time-

Frequency-View.png

[18] M. Ossmann, “YARD Stick One,” 2016. [Online]. Available: https://greatscottgadgets.com/

yardstickone/

[19] Texas Instruments, CC1110Fx / CC1111Fx, Texas Instuments, 12500 TI Boulevard Dallas, Texas,

USA 75243, July 2013.

[20] M. Ossmann, “YARD Stick One,” September 2015. [Online]. Available: https://github.com/

greatscottgadgets/yardstick/wiki/YARD-Stick-One

[21] atlas0fd00m, “rfcat.” [Online]. Available: https://github.com/atlas0fd00m/rfcat

[22] A. Mohawk, “Rfcathelpers,” February 2016. [Online]. Available: https://github.com/

AndrewMohawk/RfCatHelpers

[23] alextspy, “rolljam,” 2016 July. [Online]. Available: https://github.com/alextspy/rolljam

Simon D. Hasler 84

http://www.realtek.com.tw/products/productsView.aspx?Langid=1&PFid=35&Level=4&Conn=3&ProdID=257
http://www.realtek.com.tw/products/productsView.aspx?Langid=1&PFid=35&Level=4&Conn=3&ProdID=257
http://www.nooelec.com/store/sdr/sdr-receivers/nesdr/nesdr-nano2-plus.html
http://www.nooelec.com/store/sdr/sdr-receivers/nesdr/nesdr-nano2-plus.html
https://rad1o.badge.events.ccc.de
https://greatscottgadgets.com/hackrf/
https://greatscottgadgets.com/sdr/11/
https://greatscottgadgets.com/sdr/11/
https://upload.wikimedia.org/wikipedia/commons/6/61/FFT-Time-Frequency-View.png
https://upload.wikimedia.org/wikipedia/commons/6/61/FFT-Time-Frequency-View.png
https://greatscottgadgets.com/yardstickone/
https://greatscottgadgets.com/yardstickone/
https://github.com/greatscottgadgets/yardstick/wiki/YARD-Stick-One
https://github.com/greatscottgadgets/yardstick/wiki/YARD-Stick-One
https://github.com/atlas0fd00m/rfcat
https://github.com/AndrewMohawk/RfCatHelpers
https://github.com/AndrewMohawk/RfCatHelpers
https://github.com/alextspy/rolljam

Bibliography

[24] Ghostlulz, “Car Hack Rolljam,” April 2016. [Online]. Available: https://www.youtube.com/watch?

v=sqLYpxzEQCw&list=PLmh1Jlaj91uzNDanztB85KL38JJZIJo0G

[25] Raspberry Pi Foundation, “Raspberry Pi 3 Model B.” [Online]. Available: https://www.raspberrypi.

org/products/raspberry-pi-3-model-b/

[26] E. Courjaud, “rpitx,” October 2017. [Online]. Available: https://github.com/F5OEO/rpitx

[27] “rpitx-app-note,” October 2015. [Online]. Available: https://github.com/ha7ilm/rpitx-app-note

[28] “Replay Attacks with an RTL-SDR, Raspberry Pi and rpitx,” July 2017. [Online]. Available:

https://www.rtl-sdr.com/tutorial-replay-attacks-with-an-rtl-sdr-raspberry-pi-and-rpitx/

[29] T. Wimmenhove, “subarufobrob,” October 2017. [Online]. Available: https://github.com/

tomwimmenhove/subarufobrob

[30] ——, “Subaru fobrob exploit,” October 2017. [Online]. Available: https://www.youtube.com/

watch?v=ewMZCxi8l8A

[31] MonsieurV, “py-findpeaks,” February 2018. [Online]. Available: https://github.com/MonsieurV/

py-findpeaks

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research,

vol. 12, pp. 2825–2830, 2011.

[33] nVidia, “Driving Innovation,” 2018. [Online]. Available: https://www.nvidia.com/en-us/self-

driving-cars/

[34] F. Lambert, “Look inside Tesla’s onboard Nvidia supercomputer for self-driving,” May

2017. [Online]. Available: https://electrek.co/2017/05/22/tesla-nvidia-supercomputer-self-driving-

autopilot/

[35] nVidia, “Nvidia Jetson,” 2018. [Online]. Available: https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems-dev-kits-modules/

[36] ——, “Jetson TX2 Module.” [Online]. Available: https://developer.nvidia.com/sites/default/files/

akamai/embedded/images/jetsontx2/TX2_Module_170203_0017_TRANSP_2000px.png

Simon D. Hasler 85

https://www.youtube.com/watch?v=sqLYpxzEQCw&list=PLmh1Jlaj91uzNDanztB85KL38JJZIJo0G
https://www.youtube.com/watch?v=sqLYpxzEQCw&list=PLmh1Jlaj91uzNDanztB85KL38JJZIJo0G
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://github.com/F5OEO/rpitx
https://github.com/ha7ilm/rpitx-app-note
https://www.rtl-sdr.com/tutorial-replay-attacks-with-an-rtl-sdr-raspberry-pi-and-rpitx/
https://github.com/tomwimmenhove/subarufobrob
https://github.com/tomwimmenhove/subarufobrob
https://www.youtube.com/watch?v=ewMZCxi8l8A
https://www.youtube.com/watch?v=ewMZCxi8l8A
https://github.com/MonsieurV/py-findpeaks
https://github.com/MonsieurV/py-findpeaks
https://www.nvidia.com/en-us/self-driving-cars/
https://www.nvidia.com/en-us/self-driving-cars/
https://electrek.co/2017/05/22/tesla-nvidia-supercomputer-self-driving-autopilot/
https://electrek.co/2017/05/22/tesla-nvidia-supercomputer-self-driving-autopilot/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://developer.nvidia.com/sites/default/files/akamai/embedded/images/jetsontx2/TX2_Module_170203_0017_TRANSP_2000px.png
https://developer.nvidia.com/sites/default/files/akamai/embedded/images/jetsontx2/TX2_Module_170203_0017_TRANSP_2000px.png

Bibliography

[37] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing In Science & Engineering,

vol. 9, no. 3, pp. 90–95, May-Jun 2007.

[38] “Get Started with Graph Execution,” April 2018. [Online]. Available: https://www.tensorflow.org/

get_started/get_started_for_beginners

[39] K. Willems, “TensorFlow Tutorial For Beginners,” July 2017. [Online]. Available: https:

//www.datacamp.com/community/tutorials/tensorflow-tutorial

[40] “Numba,” 2018. [Online]. Available: https://numba.pydata.org

[41] “GPU Accelerated Computing with Python,” 2018. [Online]. Available: https://developer.nvidia.

com/how-to-cuda-python

[42] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih, “PyCUDA and PyOpenCL:

A Scripting-Based Approach to GPU Run-Time Code Generation,” Parallel Computing, vol. 38,

no. 3, pp. 157–174, 2012.

Simon D. Hasler 86

https://www.tensorflow.org/get_started/get_started_for_beginners
https://www.tensorflow.org/get_started/get_started_for_beginners
https://www.datacamp.com/community/tutorials/tensorflow-tutorial
https://www.datacamp.com/community/tutorials/tensorflow-tutorial
https://numba.pydata.org
https://developer.nvidia.com/how-to-cuda-python
https://developer.nvidia.com/how-to-cuda-python

	1 Introduction
	2 Research Questions
	3 Background
	3.1 Rolling Codes and the RollJam Attack in Theory
	3.1.1 KeeLoq Rolling Codes
	3.1.2 The RollJam Attack

	3.2 Signal Capture and Replay in Practice
	3.2.1 RTL2832U based SDR Dongle
	3.2.2 Rad1o Badge
	3.2.3 YARD Stick One
	3.2.4 Raspberry Pi 3 Model B

	4 Research Methodology
	4.1 Feature Extraction for Signal Classification
	4.1.1 Script for Replay Attack: replay.py
	4.1.2 Script for Signal Plotting and Feature Extraction: plot_diffs.py

	4.2 IDS Approach - Machine Learning for Label Prediction
	4.2.1 Script for Data Accumulation: build_dataset.py
	4.2.2 Script for k-nearest Neighbors Algorithm: kNN_prediction.py
	4.2.3 Script for Support Vector Machine Algorithm: svm_prediction.py

	4.3 Implementation of the Signal IDS on a nVidia Jetson TX2 Module
	4.3.1 Script for Signal Intrusion Detection: signal_ids.py
	4.3.2 Hardware Setup and Final Implementation

	5 Results and Findings
	5.1 Prediction Accuracy and Performance
	5.2 Limitations to the Machine Learning Approach

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Machine Learning for Image Recognition with TensorFlow
	6.2.2 GPU Accelerated Computing with Python

	A Python Source Code
	A.1 Scripts for Capture, Replay, and Plotting
	A.1.1 replay.py
	A.1.2 plot_diffs.py

	A.2 Script for Data Accumulation
	A.2.1 build_dataset.py

	A.3 Scripts for Classification
	A.3.1 kNN_prediction.py
	A.3.2 svm_prediction.py

	A.4 Script for the Signal Intrusion Detection System
	A.4.1 signal_ids.py

	A.5 IPython and Terminal Commands
	A.5.1 Commands for Shuffling the Rows of the Dataset
	A.5.2 Commands for Installation of the Python Requirements on L4T 28.2

	List of Figures
	References

