
Information Security

Carving fragmented JPEG images
Content-based file carving of non-contiguously fragmented JPEG

images

Master Thesis

for the degree of

Diplom-Ingenieur

submitted by

Bernhard Schildendorfer, BSc.
is101510

at the
Department for Information Security at the University of Applied Science St. Poelten

Mentoring
Mentor: Dipl.-Ing. (FH) Mag. Rainer Poisel
Assistance: Titel Vorname Zuname

St. Poelten, August 4, 2012
(Signature of Author) (Signature of Mentor)

Fachhochschule St. Poelten GmbH, Matthias Corvinus-Straße 15, A-3100 St. Poelten, T: +43 (2742) 313 228, F: +43 (2742) 313 228-339, E:office@fhstp.ac.at, I:www.fhstp.ac.at

Information Security

Declaration of honor

I affirm, that

I have drafted this degree dissertation independently, have not used other than the stated sources
and means and further, have not used any other illegitimate assistance.

I have, neither domestically nor abroad, submitted this degree dissertation to an examiner for
inquiry or in any other form as a test paper.

This paper is identical with the paper, which has been assessed by the examiner.

Hereby I grant St. Poelten University of Applied Sciences (Fachhochschule St. Poelten) the
exclusive and spatially unrestricted right of use to this degree dissertation, for all kinds of uses,
and retain the right to be referred to as author of this work.

St. Poelten, August 4, 2012
(Authors signature)

Bernhard Schildendorfer, BSc., is101510 ii

Information Security

Acknowledgement

I want to thank my mentor Dipl.-Ing. (FH) Mag. Rainer Poisel for the support during writing this
thesis. Without the preliminary research on the ”Multimedia File Carver”, this work would not be
possible.

Many thanks to my parents who enabled my studies and supported me all the time. I also want
to thank my girlfriend, who shared and perfectly understood my situation, by writing her diploma
thesis too. She also motivated me whenever my algorithms didn’t work as expected.

Finally, I thank my colleges for their support during my entire study. Group work, lessons and count-
less lab hours have been great with you!

Bernhard Schildendorfer, BSc., is101510 iii

Information Security

Zusammenfassung

File carving spezialisiert sich auf die Wiederherstellung von gelöschten Dateien und stellt damit
einen wichtigen Teil der IT Forensik dar. Diese Diplomarbeit zeigt unterschiedliche Carving-Techiken
und beschreibt einen spezialisierten Ansatz, um gelöschte, mehrfach fragmentierte JPEG Bilddateien
wiederherzustellen. Um dieses Ziel zu erreichen ist ein tiefgehendes Verständnis über die interne
Funktionsweise des JPEG Dateityps ist notwendig. Sowohl der verwendete Kompressionsalgorith-
mus, als auch das JPEG Containerformat, wird im Rahmen dieser Diplomarbeit beschrieben. Nach
der Evaluierung der forensischen Techniken und JPEG Spezifikationen, wird der implementierte
JPEG File Carver erläutert. Als Grundlage für die Entwicklung wird der Open-Source Carver ”Mul-
timedia File Carver” verwendet, der um Algorithmen für JPEG file carving erweitert wird. Die
beschriebenen Algorithmen ermöglichen es dem File Carver JPEG Dateiblöcke auf dem Speicher-
medium zu identifizieren, daraus Fragmente zu bilden und diese miteinander mit Bildverarbeitungsmeth-
oden vergleichbar zu machen, um anschließend deren korrekte Reihenfolge ermitteln zu können.
Abschließend wird der implementierte File Carver anhand eines zufällig generierten Dateisystem
getestet. Um die Effektivität der umgesetzten Algorithmen zu erheben, werden die Resultate mit den
Idealergebnisse verglichen und interpretiert.

Bernhard Schildendorfer, BSc., is101510 iv

Information Security

Abstract

As a major task of IT forensics, file carving focuses on recovering deleted files. This thesis
shows different carving techniques and describes a specialized approach, how to restore deleted JPEG
image files, which are fragmented into multiple parts. To achieve this, deep knowledge of the internal
mechanics of the JPEG file type is needed. Both the compression algorithm and the internal file
type structure are explained. After evaluating the forensic techniques and file type specifications,
the implemented JPEG file carver will be described. As a basis for development, the open-source
carver ”multimedia file carver” is used, which will be extended with algorithms needed for JPEG file
carving. New algorithms are required to identify JPEG data blocks on the disk, group them to file
fragments and compare those fragments to each other, in order to reorder them correctly. In the end of
this thesis, the implemented file carver is tested with a randomly generated disk image, that contains
five different JPEG image files and many other files with different file type. The carving results will
be analyzed, to evaluate the effectiveness of the implemented carving algorithms.

Bernhard Schildendorfer, BSc., is101510 v

Information Security

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Research questions . 2
1.4 Organization of the thesis . 3

2 Related work 4
2.1 Types of file carving . 4

2.1.1 File structure based carvers . 4
2.1.2 Semantic carving . 5
2.1.3 Carving with validation . 6
2.1.4 Smart carving . 6

2.2 Collation algorithms . 8
2.2.1 Signature based . 8
2.2.2 Feature based . 9
2.2.3 Normalized compression distance . 9
2.2.4 Statistical approaches . 10

2.3 Reassembly algorithms . 12
2.3.1 Greedy Sequential Unique Path (Greedy SUP) 13
2.3.2 Greedy Non-Unique Path (Greedy NUP) . 14
2.3.3 Greedy Parallel Unique Path (Greedy PUP) 14
2.3.4 Greedy Shortest Path First Unique Path (Greedy SPF UP) 14
2.3.5 Enhanced greedy reassembly algorithms . 15
2.3.6 Sequential Hypothesis-Testing PUP (SHT-PUP) 15
2.3.7 Bifragment Gap Carving . 16

2.4 File fragmentation . 17
2.5 Related projects . 19

3 Description of the JPEG standard 21

Bernhard Schildendorfer, BSc., is101510 vi

Information Security

3.1 The compression algorithm . 21
3.2 Operation modes . 23
3.3 Structure of the stored data . 24

3.3.1 JPEG header . 25
3.3.2 JPEG frame . 25

3.4 The interchange format . 26
3.4.1 JPEG File Interchange Format (JFIF) . 26
3.4.2 Exchangeable Image File Format (Exif) . 26

4 Proposed JPEG file carver 29
4.1 Architecture of the file carver . 29

4.1.1 General overview . 29
4.1.2 Architecture . 30
4.1.3 Workflow . 35

4.2 Specification of the collation algorithm . 37
4.3 Specification of the reassembly algorithm . 39

4.3.1 Grouping . 40
4.3.2 Weighting . 41
4.3.3 Reassembly algorithm . 47

5 Verification of the effectiveness of the implemented file carver 51
5.1 Test data set . 51

5.1.1 JPEG files . 51
5.1.2 Automatic generation of disk images . 53
5.1.3 Description of the used disk image . 55

5.2 Analysis of the test results . 56

6 Conclusion and outlook 60

A Appendix 62
A.1 Calculations . 62
A.2 JPEG specification . 63

Bibliography 64

List of Images 67

List of Tables 69

List of Listings 70

Bernhard Schildendorfer, BSc., is101510 vii

Information Security

Introduction

1.1 Motivation
Whenever digital technology is involved in crime, digital forensics is used as major activity in law en-
forcement. The term digital forensics is derived from ”computer forensics” and is used in connection
with all systems that can hold digital information [1, p. 1f]. As an example, if data gets unintelligible
due to a technical error or an accidental deletion by the user, digital forensics could be used for data
recovery. The importance of data recovery can easily be seen in the latest ”Data Loss Barometer” by
KPMG. Between 2007 and 2010, 500 million people have been affected by data loss incidents, 11%
of all incidents have been caused by human error or system error [2]. Using digital forensic, many
inaccessible files, caused by data loss incidents, can be restored.

A common human error in electronic data processing is the erroneous deletion of a file. Although
the recovery of a deleted file may seem as a difficult task for the user, this is the simplest case of file
recovery by use of digital forensics on many file system. This is possible because most file systems
avoid to delete files bit by bit due to performance reasons. Instead, the storage area of files get marked
as available, which allows forensic programs to restore their state and therefore recover them [3, p.
60].

Recovering data becomes much more difficult if no file system information is present, which in-
cludes the fact that also the information on file size and address is absent. File Carving faces this
problem by analyzing the whole data storage and locating files based on their distinct header and
footer information. Afterwards, all data between the starting point and the end point is restored,
regardless of the data in between. Although this makes data recovery, even without file system in-
formation, possible, the lack of data validation may cause the file to be recovered incorrectly. These
recovery errors can be caused if files are not stored as a consecutive chunk of data but fragmented over
different places on the data storage. Mohamad et al. [4, p. 80] described a carving method for JPEG
images using image pattern matching, which is able to recover fragmented images if their fragments
are stored in contiguous and linear order. All ”garbage” data in between, which does not belong to
the actual file, is removed by matching image patterns.

Pal et al. [3, p. 67] presented a new approach called ”Smart Carving” which is capable of re-
covering randomly fragmented files. They describe a three step process which is able to efficiently

Bernhard Schildendorfer, BSc., is101510 1

Information Security

reassemble fragmented data files based on their content. Key elements of this carving process are al-
gorithms to classify the clusters based on their content and an algorithm to reassemble the fragments
in the correct order called ”Sequential Hypothesis Testing” (SHT).

1.2 Problem statement
File Carving is implemented by many different programs of which ”Foremost” [5] and ”Scalpel” [6,
p. 1] are the most famous ones. In contrast to the previously described ”Smart Carving”, these tools
mainly implement carving based on the header and footer information to reassemble files. As soon
as the files are fragmented, the forensic results of these applications become unsatisfactory. Beside
open-source file carvers, an efficient content-based Smart Carver like described by Pal and Memon
is only available commercially [7]. A publicly available open-source application is desired which
utilizes content based file carving to restore randomly fragmented files.

1.3 Research questions
As described in the problem definition, there are no file carvers publicly available which are able
to recover fragmented JPEG images. Therefore, the goal of this diploma thesis is to describe and
implement such a software. Due to its open source-nature, it can take great benefit of open-source
software for file carving (e.g. ”Multimedia File Carver” [8]) and JPEG processing libraries. This will
answer the following research question:

How can fragmented JPEG images be automatically recovered using File Carving?

Since the recovery of fragmented JPEG images is more than just reordering file fragments, many
different file carving algorithms need to be reviewed and taken into consideration before implement-
ing the software. Speaking about reassembling file fragments, algorithms for file type detection of
clusters and the identification of fragments are needed. Intensive research regarding file type classifi-
cation of file fragments will be covered by the second research question.

How can existing algorithms for file fragment identification be enhanced to support reli-
able identification of JPEG file fragments?

The identified algorithms for recovering fragmented JPEG files will be implemented using open-
source software and will be publicly available. The resulting program will be based on the already
existing ”Multimedia File Carver” [8] and extend its capabilities of recovering JPEG files.

Bernhard Schildendorfer, BSc., is101510 2

Information Security

1.4 Organization of the thesis
The thesis starts by evaluating related work in the field of file carving, concentrating on file carv-
ing approaches and algorithms for file type determination. To implement an JPEG file carver, deep
understanding of the JPEG specification is needed, which is described in chapter three. Since the
JPEG specification only describes the compression algorithm, related specifications like JFIF or Exif
are also needed to be considered. Based on this research, JPEG specific file carving algorithms are
implemented and specified in chapter four in detail. In addition to the algorithms, the general archi-
tecture of the file carver is shown, to give an understanding of how the file carver can be extended,
in order to support further file types. In the end of this thesis, the implemented file carver is tested
with a randomly generated disk image, that contains five different JPEG image files and many other
files with different file type. The carving results will be analyzed, to evaluate the effectiveness of the
implemented carving algorithms.

Bernhard Schildendorfer, BSc., is101510 3

Information Security

Related work

To introduce the topic of this thesis, this chapter will describe the current state of research regard-
ing file carving, applicable algorithms and related projects facilitating those algorithms. File carving
itself is a broad and difficult research area because the forensic recovery of deleted files is influenced
by many different factors like the file types, storage media, file system or file fragmentation and there-
fore may be unreliable. This chapter describes approaches to deal with those influences and optimize
the file carving algorithm in order to increase the number of correctly carved files to a maximum.

2.1 Types of file carving
In general, the term file carving describes the forensic technique of recovering arbitrary files without
using file system information [3, p. 60]. Since this definition is very broad and the approaches for file
carving are very specific and complex, different types and forms of file carving exist. The definitions
of these types depend on the author, which carries the risk of confusing terms. Therefore, a definition
of the most common file carving types will be given in this section, based on research work of Pal,
Memon [3, p. 59] and Garfinkel [9, p. 2]. Table 2.1 defines common terms in the field of digital
forensics, which will be used in this thesis too.

Garfinkel divides the field of file carving into two non-exclusive sections: contiguous carving
algorithms and fragmented carving algorithms [9, p. 10]. The categorized algorithms differ in the
ability to recover fragmented files. It needs to be mentioned that this classification takes single algo-
rithms into account and not a complete file carving process. This is important because a file carver,
which uses fragmented carving algorithms, will probably also use contiguous carving algorithms.
For example, bifragment gap carving, described later in section 2.3.7, also uses elements of Header/-
Footer Carving. The following file carving types are described by using the following term definition:

2.1.1 File structure based carvers
According to Pal and Memon [3, p. 63], the first generation of file carvers can be categorized as file
structure based carvers, using common file specific features for the carving process. The simplest but
efficient approach is to identify files by their distinct header information. The whole disk gets scanned

Bernhard Schildendorfer, BSc., is101510 4

Information Security

Term Definition
Cluster The size of the smallest data unit that can be written to disk.
Header The cluster which contains the starting point of a file.
Footer The cluster which contains the ending point of a file.

Fragment One or a sequence of clusters of a file that are not connected to other clusters
of the same file. A fragment belongs only to one file. The distance between
fragments is unknown. Fragments of unallocated files are can be overwritten
on therefore not in place.

Base-Fragment The first fragment of a file which contains the header cluster.
Fragmentation Point The last cluster of a file fragment before fragmentation occurs. If a file has n

fragments, n-1 fragmentation points exist.
Fragmentation Area A set of clusters which contain the fragmentation point of a specific file.

Table 2.1: File carving term definition based on Pal et al. [10, p. 4]

for ”magic numbers”, which are stored in the first bytes of most files to specify their file type. An
example of this header information is the JPEG file type, which always starts with two magic bytes
0xFFD8 and ends with 0xFFD8, forming the footer. Not all file types contain magic numbers in
their footer, like Windows Bitmap, which instead contains the size of the file in its footer cluster.

Using the header information, a file carver can scan the whole data disk to identify all starting
points of a specified file type. For a chosen header, the carver assumes all clusters up to the next
footer to belong to the header and restores this sequence of clusters as a file. Header/Footer carving
is a contiguous carving algorithm because it doesn’t take fragmentation into account. Even if a file is
fragmented, all data between the header and the footer are restored, which may add wrong clusters to
the file or even worse, associate footer and header of different files to each other [3, p. 63].

Another related carving algorithm, is the Header/embedded length carving. Many file types have
their file size stored in the header, which allows structural conclusions for file carving. This allows a
file carver to read as many clusters beginning with the header as the size specifies it, to restore files
even without footer information [9, p. 10].

2.1.2 Semantic carving
Since many text based files don’t have magic numbers or other structural features which can be used
for a proper reassembly, a different carving approach is needed. Semantic carving decides reassembly
decisions based on linguistic features of different files or file fragments. Of course, the reassembly is
highly dependent on the used language excluding all file types which don’t use any natural or artificial
language (e.g. source code) suitable for a semantic analysis. For the analysis of the data, various
different approaches can be facilitated in order to gain information on the used language or the order

Bernhard Schildendorfer, BSc., is101510 5

Information Security

of different fragments. Linguistic features like the frequency of different letters or the word order
reveal the used language and may also allow an non-contiguous file carver to correctly reassembly
different fragments. [11, p. 10]

2.1.3 Carving with validation
According to a research of Garfinkel [9, p. 6], many carving decisions can be solved using object
validation. It is a decision problem in which a validator decides if a set of bytes form a file or file
fragment. The validator ensures that the resulting file is syntactically correct and therefore allows
someone to open the file properly. The decision may be based on specific file structure or file system
information. The easiest way of validation was previously mentioned with the ”file structure based
carvers”, which can be seen as a sub form of object validation. Using this carving technique, file
structure, like the header data or footer data, is used to validate the correct file type of a byte sequence.
Since this approach can’t validate the data between the header and footer, it is very likely that faulty
bytes occur, corrupting the carved file.

More specialized validation algorithms facilitate the internal container structure of files in order
to improve the decision confidence. Many file types organize their data by using a container structure.
For example, JPEG consist of containers of variable length which are used to store meta information
like Exif data, Huffman tables or image data. These containers are well defined by the JPEG standard
and are supposed to occur in a certain order within the JPEG file. If an object validator is capable of
the JPEG standard, it can decide whether the analyzed data is compliant with the standard, allowing
a reliable way to determine the file type or the correct reassembly of a file.

Garfinkel [9, p. 8] also mentioned the usage of decompression as a proper validator of compressed
file types. Before being able to apply the decompression, the container structure must be validated
first in order to extract the compressed data and to retrieve the probably needed meta data. When
JPEG is again taken as example, the compressed image data can only be decompressed if certain
compression parameters, like the Huffman table or quantization table, are extracted from the meta
data.

2.1.4 Smart carving
Pal and Memon [3, p. 67] presented a new structured approach for carving files, called ”Smart-
Carver”. They describe it as ”design of a file carver that is not limited to recovering files containing
two fragments”, [3, p. 67] like Garfinkel proofed the feasibility of a successful recovery with his
”Bifragment Gap Carver” [9, p. 10]. They analyzed the typical behaviors of disk fragmentation and
used the results for reliably reassembly randomly fragmented files. Figure 2.1 shows the architectural
design of the proposed file carver, structuring its algorithms into three independent components. The
first phase is called preprocessing, which is responsible for preparing the storage media for the actual
forensic analysis. This includes the decryption and decompression of the file system if needed, or

Bernhard Schildendorfer, BSc., is101510 6

Information Security

gathering important meta information on the storage media. If the data clusters are accessible, they
are, based on their file type, classified in the collating phase. In the final step, the classified clusters
are compared to each other to merge them and reconstruct the files. The wording and structure of the
SmartCarver will be used in the design and development of the JPEG file carver shown in this thesis,
because it allows a structured approach for implementing a file carver. Further it allows a modular
expandability of various carving algorithms.

Figure 2.1: Overview of the SmartCarver, showing its three main components: preprocessing, collat-
ing and reassembly [3, p. 67]

Preprocessing The preprocessing step prepares the raw data for further forensic analysis. Therefore
it is important to decrypt or decompress the data in order to supply it to the next layers in a processable
form. An example for data encryption is the feature BitLocker of Windows Vista. It encrypts the data
with a key, stored on a Trusted Platform Hardware Module (TPM). The preprocessing step would
either need to break the encryption or, more efficiently, let the subsystem decrypt the data storage. [3,
p. 67]

Another important feature of the preprocessing step is to remove all clusters which are referenced
by the file system, if applicable. Since less data clusters are needed to be analyzed, the computational
effort is drastically reduced in the reassembly phase. Of course, this step needs to be skipped if either
no file system meta data is in place, or it is assumed that it is tampered or corrupt. [3, p. 67f]

Bernhard Schildendorfer, BSc., is101510 7

Information Security

Collating During the collation phase, unallocated data clusters are analyzed for their file type. This
file type determination utilizes specialized algorithms (see chapter 2.2) because the raw data my not
contain meta information which let it easily associate with a specific file type [3, p. 68f]. To explain
this in more detail, lets assume a stored JPEG file, which gets deleted by marking the associated clus-
ters as available in the file system. As described in chapter 2.1.1, the file type can easily be identified
by searching the header and footer information of a file, assuming all other clusters in between to be-
long to the specified file type. Since the SmartCarver shall be able to reassemble fragmented files, this
approach is not applicable for all data clusters. Therefore, clusters need to be analyzed independently
for their file type. To get back to the JPEG example, each cluster needs to be analyzed for special
features of the file type like key words, control sequences, byte frequencies or other statistical data.
The reliability of file type classification is essential for an effective reassembly.

Reassembly The final step of the smart carving process has the task to identify the fragmentation
point of each unrecovered file in identify the starting point of the correct next file fragment. This is
done until all files are reassembled or determined to be unrecoverable. It shall be noticed that not the
raw clusters are reassembled but the identified file fragments which may consist of multiple clusters.
[3, p. 69ff]

The algorithm for identifying the correct order of the available file fragments is called ”reassembly
algorithm”. Different approaches are explained in more detail in chapter 2.3. Basically they can be
seen as a path problem, with the problem of assigning each vertex (fragment) another one in a way
the edge (probability of correctness) between those vertices or of the whole graph is optimal.

2.2 Collation algorithms
Collation algorithms are used to determine the file type of a data cluster. Since a data cluster is usually
a very small unit of information, the classification decision is error prone. The quality of a collation
algorithm is defined by its ability to correctly identify the file types of clusters while minimizing the
amounts of false-positives.

2.2.1 Signature based
Signature based collation algorithms are the most straight forward techniques for file type identifi-
cation. They rely on static patterns hold by the file. The well known UNIX ”file” command makes
use of the libmagic library which provides a signature based file type identification. It searches for
signatures in the targeting file to identify it. Many file types start with an unique byte pattern called
”magic numbers”, like 0xFFD8 for a JPEG image, which is used for a reliable identification [12, p.
32].

Bernhard Schildendorfer, BSc., is101510 8

Information Security

A disadvantage of this technique is that the beginning of the file is needed to identify the file
type. Signature based algorithms can’t be used for file type identification of file fragments since the
magic numbers only exist in the starting fragment. This approach can only be used to determine the
beginning of files. The number of recovered starting fragments also determines the number of parallel
execution paths for the later reassembly [13, p. 140].

2.2.2 Feature based
In contrast to signature based algorithms, feature based algorithms are specialized type-x recognition
approaches, which look for file type specific features. Roussev [14, p. 12] and Veenman [15, p. 397]
conclude that feature based algorithms are needed for a reliable file type determination. ”It seems
that the two-class (or type-x) recognition models are more useful, since the false positive rate can be
adjusted per file type. The multi-class (type-all) recognition models have, however, the advantage
that they clearly show which file types are confused with which ones. Although, the cause for these
confusions is not fully clear, focusing on them helps in defining more distinctive features.” [15, p.
397]

As an example, lets have a short look at an example for feature based identification of JPEG
fragments. ”The header has a simple record structure where the beginning of each record is announced
by the presence of a marker, a 16-bit number in the 0xFFC0 to 0xFFFE range, which is followed
by a 16-bit number describing the length of the record.” [14, p. 9] Because the byte after 0xFF are
used as control sequences, the byte 0xFF needs to be escaped if it exists in the valid image date.
Therefore, a zero byte is stuffed after 0xFF which results in 0xFF00 [12, p. 64]. Roussev found out
”that the average distance between two occurrences of 0xFF00 in a jpeg file was 191 bytes” [14, p.
10]. This feature can be used to reliably classify JPEG file fragments.

Beside JPEG, feature based approaches are also feasible for HTML by looking for ”<html>” or
”href=” or other distinct character strings. Important is, that the features are highly dependent on the
file types and should be unique [3, p. 68].

2.2.3 Normalized compression distance
”NCD is based on the idea that by using a compression algorithm on data vectors (in whatever shape
or form these may come) both individually and concatenated, we will receive a measure of how distant
they are. The better the combination of the two vectors compress, compared to how the individual
vectors compress on their own (normalised to remove differences in length between the set of all
vectors), the more similar they are.” [16, p. 25] Equation 2.1 shows the normalized compression
distance in a more formal way, in which C is the compression function, x and y are two vectors
of which their distance is determined. The lower the output of this function is, the higher is the
probability that x and y are fragments of the same file type. For this approach, both x and y don’t
have to be fragments of the same file, y is assumed to be a fragment of a reference file.

Bernhard Schildendorfer, BSc., is101510 9

Information Security

NCD(x, y) = C(x, y) − min(C(x), C(y))
max(C(X), C(y)) (2.1)

Axelsson also shows that this type-all algorithm can be greatly used to tell compressed and non-
compressed file types apart and identify many non-compressed file types. The distinction between
different compressed file types like jpeg, zip or png is not possible due to an average accuracy per
class of less than 10% [16, p. 28ff].

2.2.4 Statistical approaches
All algorithms that use statistical methods for file type determination can be seen as type-all algo-
rithms and are summarized in this chapter.

Forensic relative strength scoring system is a scoring system proposed by Shannon [17, p. 1]
to determine the file type of a data set. It consists of ASCII proportionality and entropy scoring.
ASCII proportionality is a very simple approach to tell textual data and binary data apart. It counts all
readable ASCII characters and divides it by the sum of bytes in the file. The resulting percent value
shows the ASCII portion of a file, whereas 100% would be a file containing only readable ASCII
characters [17, p. 3]. The second method, entropy scoring, measures the density of information in
a file. In contrast to NCD, this algorithm doesn’t compare two datasets to each other but tries to
guess the file type based on the entropy value. ”To summarize one of Shannon’s concepts, Entropy
is a measure of the information density or compression state of a given unit of data. The more a
given unit can be compressed, the lower the Entropy value” [17, p. 4]. Since different file types have
specific entropy values, the outcome of this approach can be used to categorize the file.

File fingerprint is a more complex statistical approach presented by McDaniel and Heydari [18,
p. 3f], using byte frequency distribution (BFD) and byte frequency cross-correlation (BFC). They
assume that every file type has a generic fingerprint based on their statistical occurrence of bytes.
Therefore, the BFD algorithm counts the occurrences of all bytes from 0 to 255, resulting a histogram.
This histogram, also called ”byte frequency fingerprint”, can be compared to an averaged histogram
trained by a test set of the specific file type. If the variance between two histograms is below a defined
threshold, the file type is determined. The second technique, byte frequency cross-correlation, is
used to increase the reliability of a correct file type determination. It takes the correlation between
frequently occurring bytes into account. It is assumed that many file types contain certain patterns or
strings, like the HTML opening tag ”<” and closing tag ”>” or the keyword ”href=”. This technique
is a kind of feature based approach, which helps the BFD algorithm to achieve better results. They
showed in their research that their algorithms achieve a low average accuracy rate of 30% to 45%.

Bernhard Schildendorfer, BSc., is101510 10

Information Security

Oscar Method is a specialized approach based on BFD shown by Karresand and Shahmehri [13,
p. 147]. To increase the accuracy rate of the BFD algorithm, they introduced a rate of change (RoC),
which takes the ordering of two consecutive bytes into account. Like in BFD, the RoC between all
consecutive bytes in a file can be seen as a histogram which gives an unique fingerprint on the ordering
of bytes. Afterwards, it can be compared to a reference fingerprint of a specific file type. According
to Karresand and Shahmehri, this algorithm performs, depending of the file type, with an accuracy up
to 86%.

Visual classification of data objects is presented by Conti et al. [19, p. 1]. The stored bytes are
presented as grayscale graphical depictions, which helps to distinguish structurally different regions
within a data file. This ”facilitates a wide range of analytic tasks such as fragment classification,
file type identification, location of regions of interest, and other tasks that require an understanding
of the ’primitive’ data types the objects contain.” [19, p. 1] Within their paper, they discussed the
visualization of a wide range of media types which helps to understand their structure to make a file
type classification based on visual patterns possible.

Linear discriminant analysis is used by Calhoun and Coles [20, p. 15] to classify different files
into groups of file types. ”There is an initial training phase in which data from individuals belonging
to known groups are used to develop a classification model. The classification model is a set of
linear functions, one for each group. Data from individuals whose group membership is unknown can
then be entered into the classification model. The model predicts the group to which the individual
belongs according to the function that returns the highest value.” [20, p. 15] The linear discriminant
prediction is based on combination of statistics like the frequency of ASCII codes, entropy, standard
deviation and correlation between adjacent bytes. As new approach, the prediction based on the
longest common substring is used. It ”is based on the idea that two files of the same type will probably
have longer substrings in common than would files of different types.” [20, p. 15] The results show
that the accuracy of the linear discriminant method is strongly dependent on the used combinations
of statistics as well as on the compared file types. Although the comparison between JPEG and PDF
files show a very high success rate, JPEG was not compared to another compressed file type like ZIP
which would be a more challenging task.

Support Vector Machine SVMs (Support Vector Machines) are an universal method for data clas-
sification using mathematical approaches. It operates in two phases. In the first one, the training
phase, training data is processed by the SVM for which the classification is already known. Each
value of the test set is represented as a vector in a vector space. The goal of the SVM is to calculate
a model which separates the two sets best of each other with so the distance between them becomes
the maximum. This can be seen in Figure 2.2 where a training set of two classes of test vectors get
separated by a linear discriminant. If the width of the discriminant is a maximum, it is optimal (b).

Bernhard Schildendorfer, BSc., is101510 11

Information Security

Although the discriminant of (a) is broader, it is only sub-optimal because not all vectors are classified
correctly.

Figure 2.2: (a) A sub-optimal solution where not all vectors are classified correctly. (b) The width of
the linear discriminator is optimal for this test set.[21, p. 11]

Since it may happen that vectors can’t be linear separated, which is necessary to formulate a SVM,
the kernel trick must be used. Using a so called kernel function, the training vectors are mapped into a
higher (maybe infinite) dimensional space where they can be linear separated using a hyperplane. The
hyperplane can be transformed back into the two dimensional vector space and used as discriminator
for classification. [22, p. 4]

2.3 Reassembly algorithms
Based on the classified file fragments, algorithms are needed to identify their correct order. Beside
the chosen algorithm, the resulting order is based on the candidate weights between the fragments,
which is used to compare fragments. If a set of fragments are seen as vertices in a graph, whereas
the weights represent the edges in between, the reassembly algorithm needs to find the optimal path
for each file, based on the calculated weights. Based on a definition by Pal et al. [23, p. 388ff], a
reassembly algorithm can be specified by the following features:

1. Path problem: Since all fragments belong exactly to one file, causing every vertex to be used
uniquely, the reassembly algorithm usually results in a vertex disjoint path problem. Never-
theless, algorithms can also be non-disjoint, allowing vertices to be used multiple by different
reassembly paths.

Bernhard Schildendorfer, BSc., is101510 12

Information Security

2. Execution mode: files can be reassembled serially or in parallel.

3. Heuristic: two heuristic modes are currently defined for reassembly algorithms, Greedy and
Enhanced Greedy. They define the decision process for assigning a fragment to a file. Greedy
Heuristics start with the header of a file and add it to a reconstruction path P. This header
fragment is chosen as current fragment s and compared to the other available fragments. Based
on the weights calculation, the best match t is chosen and added to the reconstruction path. t is
now set to be the new current fragment s. The process is repeated until the file is recovered or
no more fragments are available. Enhanced Greedy algorithms additionally verify if the next
fragment t would have a better predecessor b than s. This greatly reduces the propagation of
errors [24, p. 21f].

Based on these features, Pal et al. presented eight algorithms, of which the Unique Path algorithms
are a very important subset. They are based on the k-vertex disjoint path problem. As mentioned
before, this causes every vertex to be used only once in the whole reassembly process. Therefore, UP
algorithms create an unique vertex path for every file in the graph.

2.3.1 Greedy Sequential Unique Path (Greedy SUP)
”Greedy sequential unique path is a sequential algorithm using the greedy heuristic. When the algo-
rithm assigns a fragment to an image reconstruction, the fragment will be unavailable for selection
in the reconstruction of any other images,” [23, p. 289] creating vertex disjoint paths. The problem
of this algorithm is that the reassembly is highly dependent on the order of images being processed.
This is caused by the characteristic of disjoint paths that mistakes in building the reassembly paths
will propagate. In other words, if an fragment is wrongly used in the reassembly path P1, it is un-
available in the reassembly path P2 where it would belong. The missing fragment could cause P2 in
turn to use another wrong fragment spread, allowing the mistake to spread across multiple reassembly
paths.

F∑
i=1

i (2.2)

To calculate the complexity of this algorithm, we need to Figure out how many comparisons are
necessary to reassemble one file. Equation 2.2 calculate the amount of comparisons for a file, where
F are the remaining file fragments. Of course, each reassembled file reduces the number of available
fragments. Based on this equation, this algorithm has an average complexity of O(n

∑
n), which

can be generalized to O(n2).

Bernhard Schildendorfer, BSc., is101510 13

Information Security

2.3.2 Greedy Non-Unique Path (Greedy NUP)
”Greedy non-unique path is also a sequential algorithm using the greedy heuristic. Since this is a
NUP algorithm any fragment, other than a header fragment, that was chosen in the reconstruction
of an image will be available for selection in the reassembly of another image. This prevents errors
from propagating but as mentioned earlier, does not necessarily lead to disjoint paths.” [23, p. 289]
In contrast to SUP, the multiple usage of fragments will prevent reassembly errors to propagate. The
complexity of this algorithm with O(n2) is the same like for Greedy SUP.

2.3.3 Greedy Parallel Unique Path (Greedy PUP)
Greedy PUP builds up the same reconstruction paths like Greedy SUP, but reconstructs the files not
sequentially but parallel, reducing the risk of a propagation of errors. Memon and Pal describe the
algorithm as a variation of Dijkstra’s single source shortest path algorithm [23, p. 389]. Like Greedy
SUP, reassembly paths Pi are created for each file i to reconstruct. The header fragments hi are
added as the first element to the according reconstruction paths. In the next step, the last fragments
of all reconstruction paths (in the first run the header fragments) are compared to the remaining
file fragments. The best match of all of these comparisons is chosen and added to the according
reassembly path. Figure 2.3 illustrates this algorithm. (a) elects fragment six to be the overall best
match and gets added to header two (b). This process gets repeated until no more fragment are
available or all files are reassembled. ”The problem with Greedy PUP is that the best fragments
being matched with the current set of fragments may be better matches for fragments that have not
been processed as yet, thus leading to error propagation again.” [23, p. 390] The complexity of this
algorithm is again O(n2).

2.3.4 Greedy Shortest Path First Unique Path (Greedy SPF UP)
Shortest Path First (SPF) makes reassembly conclusions based on the average cost of a complete re-
assembly path as instead of single fragment comparison. By combining the benefits of Non-unique
Path (NUP) and Parallel Unique Path (PUP) to completely prevent the propagation of reassembly er-
rors while maximizing the overall correctness of all reassembled files. The algorithm first recovers all
files using the NUP algorithm, letting al chosen fragments available for further usage. At this point, it
is assumed that the file with the best average cost is the best reassembly. The average cost is calculated
for each file by dividing the sum of costs between all fragments of a reassembly with the amount of
fragments. The file with the lowest average path costs gets recovered and all assigned fragments are
removed from the list, making them unavailable for the other recovery paths. Experiments show that
the SPF algorithm provides the best accuracy with 88% of files being reconstructed, whereas the PUP
algorithm scores 83% [3, p. 66]. ”However, the PUP algorithm was substantially faster and scaled
better than the SPF algorithm.” [3, p. 66]

Bernhard Schildendorfer, BSc., is101510 14

Information Security

Figure 2.3: An example for Greedy Parallel Unique Path (Greedy PUP) [23, p. 390]

2.3.5 Enhanced greedy reassembly algorithms
”The greatest problem that the greedy heuristic has is that it chooses the best available matching
fragment for the current fragment without attempting to take into account the possibility that fragment
may be an even better match for another fragment that has not been processed as yet.” [23, p. 390]
To avoid this problem, the enhanced greedy algorithms add a step before connecting to best match
fragments together. The algorithm determines ”if the best match for a fragment may be an even better
match for another fragment. If this is the case then the next best match is chosen, and the process is
repeated until a fragment is found that is not a better match for any other fragment.” [23, p. 390] To
illustrate this algorithm, s is again the current fragment and t its best match. Greedy UP would assign
t to s and remove it from the list of available fragments. Enhanced greedy algorithms determine the
best predecessor b for t in assumption this may not be s. t is only taken as s’ best match if s = b
[23, p. 390]. Although it is not explicitly discussed by Memon and Pal, the PUP algorithm seems to
fulfill this requirement already, although it is not explicitly described to be enhanced greedy. Because
all available fragments (t’s) are tested for b of all reassembly paths, it is assured that the weighting
relationship is commutative.

2.3.6 Sequential Hypothesis-Testing PUP (SHT-PUP)
SHT-PUP is a modification of the PUP algorithm, testing not only whether two clusters belong to
each other but also taking clusters after the comparative cluster into account. This greatly reduces

Bernhard Schildendorfer, BSc., is101510 15

Information Security

the amount of comparisons and increases the reliability of the reassembly. To explain this algorithm,
assume the i-th current cluster bsi for the reassembly path Pi, which gets compared to the best cluster
bti. Until this point, SHT-PUP and PUP are the same. SHT-PUP now also analyses clusters directly
immediate after bti, starting with the data clusters b1 to bn, testing for two hypothesis whether the
sequence of clusters belong to the fragment (H0) or not(H1). The algorithm tests for a longer cluster
sequence as long the first hypothesis (H0) is correct, meaning that the cluster sequence belongs to a
fragment. The test stops if H1 is met, indicating the fragmentation point. If the evaluated data do not
yield into a decision, the test continues until one of the hypothesis can be confirmed.

The hypotheses are decided using a ”likelihood ratio of observing sequence W under the two
hypotheses, which is expressed as the ratio of the conditional distributions of observed weights under
H0 and H1 as” shown in Equation 2.3 [3, p. 70].

∆(W) = Pr(W |H0)
Pr(W |H1) (2.3)

The outcome of this likelihood ratio is then compared to certain thresholds (Equation 2.4) in order
to decide which hypothesis is met. If this ratio is larger than τ+, we assume that hypothesisH1 is true.
”If, on the other hand, test statistic is smaller than τ−, hypothesis H0 is true and all the fragments are
merged and the test continues from the next sequential cluster. Finally, if neither case is true, testing
continues until one of the thresholds is exceeded or end-of-file indicator is reached.” [3, p. 70f]

Test result =


H1, ∆(W) > τ+

H2, ∆(W) < τ−

inconclusive, τ− < ∆(W) < τ+
(2.4)

2.3.7 Bifragment Gap Carving
If a carving algorithm has the ability to carve a file of at least two fragments, it is called fragmented
carving algorithm. Based on the fact that many files are not fragmented in more than two files,
Garfinkel [9, p. 10] proposes bifragment gap carving, a fragmented carving algorithm, specialized on
exactly two fragments per file. The algorithm assumes, that two fragments of a file are usually not
separated by a huge gap. This idea can be seen in Figure 2.4, which shows two fragments f1 and f2,
ranging from sectors s1 to e1 respectively s2 to e2, which are both separated by a gap of size g. Since
the size of both fragments are not decided yet, the gap size needs to be determined. Therefore, all
possible gap sizes between the two fragments are tried until the validation of the carved byte sequence
works or g exceeds its maximum of e2 - s1. Garfinkel describes the algorithm with a complexity of
”O(n4) for finding all bifragmented objects of a particular type in a target, since every sector must be
examined to determine if it is a header or not, and since any header might be paired with any footer.”
[9, p. 10]

Bernhard Schildendorfer, BSc., is101510 16

Information Security

5.1. Contiguous carving algorithms

Our contiguous carver supports block-based carving, which only
looks for files beginning and ending at sector boundaries, as
well as character-based carving, which attempts carving on
character boundaries. Block-based carving is fast, but charac-
ter-based carving will find objects that are embedded in vari-
ous kinds of container files. Character-based carving is also
necessary when carving objects that are stored on file system
such as ReiserFS (Mason, 2001) that do not restrict new objects
to sector boundaries.

In Section 4.1 we described a general strategy for carving
contiguous objects from a disk image using object validation.
The carver we have implemented can perform a variety of
optimizations, depending on the individual properties of the
object validators.

5.1.1. Header/footer carving
Header/footer carving is a method for carving files out of raw
data using a distinct header (start of file marker) and footer
(end of filemarker). This algorithmworks by finding all strings
contained within the disk image with a set of headers and
footers and submitting them to the validator.

5.1.2. Header/maximum size carving
This approach submits strings to the validator that begin with
each discernible header and continue to the end of the disk
image. A binary search is then performed on the strings that
validate to find the longest string sequence that still validates.
This approach works because many file formats (e.g. JPEG,
MP3) do not care if additional data are appended to the end
of a valid file.

5.1.3. Header/embedded length carving
Some file formats (MSOLE, ZIP) have distinctive headers that
indicate the start of the file, but have no such distinctive flag
for the end.

This carver starts by scanning the image file for sectors
that can be identified as the start of the file. These sectors
are taken as the seeds of objects. The seeds are then grown
one sector at a time, with each object being passed to the
validator, until the validator returns the length of the object
or a V_ERR, indicating that a complete file does not exist. If
an embedded length is found, this information is used to
create a test object for validation. Once an object is found
with a given start sector, the carver moves to the next
sector.

5.1.4. File trimming
‘‘Trimming’’ is the process of removing content from the end
of an object that was not part of the original file. We have
found two ways for automating trimming. If there is
a well-defined file footer, as is the case with JPEG and ZIP
files, the file can be trimmed to the footer. For byte-at-a-
time formats that do not have obvious footers, the files
can simply be trimmed a character at time until the file no
longer validates; the last trimmed byte is the re-appended
to the file.

5.2. Fragment Recovery Carving

We use the phrase Fragment Recovery Carving to describe any
carving method in which two or more fragments are reas-
sembled to form the original file or object. Garfinkel called
this approach ‘‘split carving’’ (Garfinkel, 2006a).

5.2.1. Bifragment Gap Carving
If a region of sectors in a disk image begins with a valid header
and ends with a valid footer but does not validate, one possi-
bility is that the file was in fact fragmented into two or more
pieces and that the header and footer reside in different frag-
ments. In the Garfinkel corpus there are many cases of bifrag-
mented files where the gap between the first fragment and the
second is a relatively small number of disk sectors.

The 2006 Challenge contained several instances of JPEG files
that were in two fragments, with one or more sectors of junk
inserted in the middle. Aside from the large number of frag-
mented files in the Challenge and the fact that the gap size was
rarely an integral power of two, the scenario was quite realistic.

To carve this kind of scenario Garfinkel developed an
approach which involves assembling repeated trial objects
from two or more sector runs to form candidate objects which
are then validated. Herewe present an improved algorithm for
split carving, which was called Bifragment Gap Carving (Fig. 2):

! Let f1 be the first fragment that extends from sectors s1 to e1
and f2 be the second fragment that extends from sectors s2
to e2.

! Let g be the size of the gap between the two fragments, that
is, g¼ s2# (e1þ 1).

! Starting with g¼ 1, try all gap sizes until g¼ e2# s1.
! For every g, try all consistent values of e1 and s2.

Essentially, this algorithm places a gap between the start
and the end flags, concatenating the sector runs on either
side of the gap, and growing the gap until a validating se-
quence is found. This algorithm is O(n2) for carving a single ob-
ject for file formats that have recognizable header and footer;
it is O(n4) for finding all bifragmented objects of a particular
type in a target, since every sector must be examined to deter-
mine if it is a header or not, and since any header might be
paired with any footer.

5.3. Bifragment Carving with constant size and known
offset

Bifragmented MSOLE documents cannot be carved with gap
carving because there is no recognizable footer. However,

f1sectors

H
ea
de
r

Fo
ot
er

gap

s1 e2

f2sectors

e1 s2

Fig. 2 – In Bifragment Gap Carving the sectors s1 and e2 are
known; the carver must find e1 and s2.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 2 – S 1 2S10

Figure 2.4: ”In Bifragment Gap Carving the sectors s1 and e2 are known; the carver must find e1 and
s2.” [9, p. 10]

2.4 File fragmentation
To understand how to recover fragmented files it is essential to find the reasons out why and how those
files are fragmented by the file system. File fragmentation is a necessary feature of file systems which
allows the storage of files for which not enough consecutive clusters are available. After the first
storage, fragmentation can still happen by performing write operations to the file, which dynamically
changes its size, forcing the file system to use new clusters at a completely different location of the
disk. Although files can be spread over different clusters, the file system can access them easily by
maintaining a list of associated clusters for each file. Since this list can be deleted by the user or by
a defect of the disk, the utilization of specialized file carver is necessary, which can restore files by
reassembling their fragments.

As an example for such a file fragmentation, Figure 2.5 shows how files are logically stored using
the FAT file system. Two files are stored, Recovery.txt and Hello.txt, which are both spread
over multiple clusters. Both the directory entry and the FAT cluster entry are stored at the beginning
of the file system and are used to locate the stored files on a cluster basis. The directory entry stores
the file names and their starting cluster. The last is used to identify the other clusters for the given file,
which are stored in a single linked list. The cluster numbers stored in that list are then accessed in the
disk data area which holds the actual file data. If the files are deleted, simply the FAT cluster entries
are marked as deleted and their directory entry gets tagged as available, still referring to the starting
cluster. Although this allows a quick identification of the starting cluster of a file, the clusters of file
fragments are hard to find [3, p. 61].

Garfinkel [9, p. 4] shows that file fragmentation is relatively rare on today’s file systems because
the increasing storage size of disks. However, he still underlines the importance of file fragmentation
capability of modern file carvers, since highly fragmented files are mainly of interest in forensic
investigations. He shows three reasons why files get fragmented today, although modern file systems
try to prevent this measure:

Bernhard Schildendorfer, BSc., is101510 17

Information Security

IEEE SIGNAL PROCESSING MAGAZINE [61] MARCH 2009

 DELETION
 When deleting a file, the file system does
not actually go to the clusters of the file
and zero them out. Instead, all the file sys-
tem does is go to the cluster links in the
FAT and set them to hex value “00” that
indicates that the clusters have been unal-
located. The actual contents of the drive
are still present after the deletion.
Interestingly, while the FAT cluster entries
for each of the clusters of the deleted file
are indicated to be unallocated, the direc-
tory entry of the file still points to the start-
ing cluster with a special character being
used to mark that this entry represents a
deleted file.

 Figure 2 shows what happens to the
FAT when recovery.txt is deleted. The
clusters represented by the file in the FAT
are changed to zero to indicate availabili-
ty, however, the actual cluster contents of
recovery.txt have not been removed as yet.
The first byte of the name is also changed
in the file entry directory to represent
that the file was deleted.

 RECOVERY
 Since the cluster sequence in the FAT is
set to hex value “00” (unallocated) on a
file’s deletion, recovery programs have to
check that the file starting cluster is not
in use, and then assume that the rest of
the file is stored in sequential clusters.
Once a file is deleted, there is absolutely
no way to determine the exact sequence
of clusters to reconstruct the file using
the file system meta-data alone. In the
example using recovery.txt, traditional
file recovery programs will find the entry
for “_ecovery.txt” and see that the start-
ing cluster for the deleted file was 300.
Some recovery programs will only recov-
er a partial file (clusters 300, 301, 302),
while the smarter file recovery programs
are able to recover the whole file because
they see that clusters 303 and 304 are in
use by another file, and that clusters 305
and 306 are available, so they will merge
the unallocated clusters only. However,
what happens if the file is broken up into
more than one piece or there are unallocated clusters belong-
ing to another file in between? For example, if hello.txt and
recovery.txt are deleted, then file recovery becomes much
more difficult without analyzing the contents or structure of
the files.

 NTFS
 FAT-32, while an improvement over earlier versions of the
FAT, does not support files of greater than 4 GB. Another lim-
itation is the time taken to determine the free space for the
FAT increases with an increase in the number of clusters in

Contents of Recovery.txt

Contents of Recovery.txt

Contents of Recovery.txt

Contents of Recovery.txt

Contents of Recovery.txt

Contents of Hello.txt

Contents of Hello.txt

Directory Entry

Recovery.txt

Hello.txt

Cluster 300

Cluster 303

Cluster 299

Cluster 300

Cluster 301

Cluster 302

Cluster 303

Cluster 304

Cluster 305

Cluster 306

Unknown Contents

299

300

301

301

0

FAT

302

302

303

304

304

305

305

306

306

EOF

EOF

File Name

FAT Cluster Entry

Starting Cluster

Disk Data Area

 [FIG1] FAT file allocation for file called recovery.txt, which is stored in clusters 300, 301,
302, 305, and 306. File hello.txt is stored in clusters 303 and 304.

 [FIG2] FAT file deletion for file called recovery.txt, which was stored in clusters 300, 301,
302, 305, and 306. FAT indexes representing the clusters were set to 0 to indicate that
they are now available for use. File hello.txt was not deleted.

Contents of Recovery.txt

Contents of Recovery.txt

Contents of Recovery.txt

Contents of Recovery.txt

Contents of Recovery.txt

Contents of Hello.txt

Contents of Hello.txt

Directory Entry

_ecovery.txt

Hello.txt

Cluster 300

Cluster 303

Cluster 299

Cluster 300

Cluster 301

Cluster 302

Cluster 303

Cluster 304

Cluster 305

Cluster 306

Unknown Contents

299

300

301

0

0

FAT

302

0

303

304

304

305

0

306

0

EOF

0

File Name

FAT Cluster Entry

Starting Cluster

Disk Data Area

Authorized licensed use limited to: Polytechnic Inst of New York Univ. Downloaded on October 21, 2009 at 08:43 from IEEE Xplore. Restrictions apply.

Figure 2.5: Overview of the logical storage of files using the FAT file system [3, p. 61]

1. There are not enough consecutive clusters available on the media to store the file without frag-
mentation. This may be the case if the media is heavily utilized, leaving many small sized
available data regions on the disk.

2. New data is appended to an existing file, which has no more free clusters available at the end.
The file system may now relocate the file to prevent file fragmentation. If it is a big file, the
file system may also fragment the file for performance reasons, writing the new data to another
location.

3. ”The file system itself may not support writing files of a certain size in a contiguous manner.
For example, the Unix File System will fragment files that are long or have bytes at the end of
the file that will not fit into an even number of sectors. Not surprisingly, we found that files on
UFS volumes were far more likely to be fragmented than those on FAT or NTFS volumes.” [9,
p. 4]

Bernhard Schildendorfer, BSc., is101510 18

Information Security

Kloet shows [25, p. 8f] different kinds of fragmentation scenarios which need to be concerned
during the reassembly phase of a file carver. Beside of a non-fragmented file, three fragmentation
types exist, which can be classified based on the arrangement of their fragments:

1. Linearly fragmented files are fragmented into at least two fragments which are arranged in the
correct order on the media. This means that if the media is sequentially iterated, all fragments
are read in the order they are intended to be reassembled, beginning with the header fragment
and ending with the footer fragment.

2. Non-linearly fragmented files consist at least of two fragments where one or more fragments
are not stored in the correct order. This is the case if the footer fragment is stored in clusters
before the header fragment. A sequentially reassembly of the file fragments would result in an
inconsistent file.

3. Partial files have at least two file fragments of which not all are in place, regardless of their
order. Those files can’t be reassembled and should be identified in order to exclude them from
any file carving process.

Figure 2.6: (1) linearly fragmented file (2) non-linearly fragmented file (3) partial file [25, p. 48ff]

2.5 Related projects
Foremost was originally developed by the United States Air Force Office of Special Investigations
and later improved by Mikus [26, p. 59] in the course of his master’s thesis. The tool allows file
carving ”based on their headers, footers, and internal data structures.” [5]

Bernhard Schildendorfer, BSc., is101510 19

Information Security

Scalpel is an open-source file carver based on Foremost, which performance was improved by
Richard III and Roussev [6, p. 1]. Although it is significantly more efficient, no considerable im-
provements were made in the used carving algorithms.

Adroit Photo Recovery / Forensics utilizes the SmartCarving algorithm invented by Pal and Memon
[3, p. 67], allowing it to reassemble fragmented JPEG, PNG, BMP and GIF files with support for var-
ious camera raw data formats. The application also supports all versions of FAT, NTFS, HFS, HFS+
and corrupted file systems in general. The license costs for adroit photo forensics are $999 with an
annual maintenance plan of $300. [7]

DataLifter allows the signature based recovery of files, supporting multi threading CPUs. It is a
commercial forensic tool that can be bought for $155.00. [27]

Encase Forensic is a forensic toolkit sold by Guidance Software. Its advanced analysis feature
allows the recovery of deleted files by parsing event logs or file signature analysis in unallocated disk
space. [28]

Forensic ToolKit (FTK) is developed by AccessData and sold for professional use. Like Encase,
only basic file carving operations are available. [29]

NFI Defraser allows, based on its documentation, the detection of ”full and partial multimedia files
in data streams.” [30]

PhotoRec is an open source multi-platform application for recovery of image file. It supports many
operating systems (DOS, Windows NT4/2000/XP/2003/Vista/2008/7, Linux, FreeBSD, NetBD, OpenBSD,
Sun Solaris, Mac OS X) as well as file systems (FAT, NTFS, EXT2, EXT3, HFS+). The data recovery
is done by using a signature based approach, working only for unfragmented files. [31]

Recover My Files is able to recover more than 200 file types, based on the official web page,
including image files. No detailed file carving techniques are described on the product page. It can
be purchased for e69,95. [32]

Revit is an open source proof of concept file carver, developed for the DFRWS 2006 challenge. It
supports more versatile techniques than header and footer carving. It uses deep carving, which is a
kind of file structure based carving approach, analyzing for very deep file specific structures [33, p.
11]. The alpha version of 2007 is no longer developed further.

Bernhard Schildendorfer, BSc., is101510 20

Information Security

Description of the JPEG standard

This chapter describes the JPEG image compression algorithm as well as the interchange formats
which are needed for a proper exchange of JPEG images across multiple decoding entities like per-
sonal computers. A deep understanding of the JPEG data structure is needed to design an effective
file carving algorithm for fragmented JPEG files, where both the compressed image data and the sur-
rounding meta data needs to be analyzed and reassembled. Because of the very versatile file type
specification, the standard will be explained as abstract as possible but as specific as needed to derive
sufficient file carving algorithms.

Basically, the JPEG standard consists of three core elements. The encoder generates compressed
image data by applying a specified set of procedures and certain table specifications to the digital
source image data [12, p. 13]. The inverse operation is done by the decoder which outputs the
digital reconstructed data. Both the compression algorithm, the encoder and the different modes of
operations are described in the sections 3.1 and 3.2. At the end of the chapter, the interchange format
is described which is required by the JPEG standard and needed for exchange between application
environments [12, p. 13].

3.1 The compression algorithm
Regarding to the JPEG standard, JPEG compression can either be done lossy or lossless. Whereas the
lossy compression makes use of a discrete cosine transform (DCT) to remove certain frequencies in
the picture, lossless compression skips this step and does the compression only with entropy coding.
In contrast to quantized DCT, entropy coding can be reversed without loss of information.

Since the lossy compression also contains the lossless compression in respect to the algorithm
steps, it will be described in more detail. As you can see in Figure 3.1, the DCT-based coding consists
of five steps to result the compressed image data:

1. The samples of the source image data, which are defined as elements in the two-dimensional
array which comprise components, are grouped into 8x8 blocks [12, p. 6].

2. Afterwards, each block is transformed by a forward DCT (FDCT) into 64 values called DCT
coefficients of which one is the DC coefficient and the other 63 are the AC coefficients. If the

Bernhard Schildendorfer, BSc., is101510 21

Information Security

DCT coefficients are also imagined as a 8x8 matrix, they are described as Sv,u where v states
for the x-axis and u for the y-axis. S0,0 is the DC coefficient [12, p. 27].

3. In the next step, the DCT coefficient quantization is used to selectively reduce the information
stored in the DCT coefficients. ”The quantizer step size for each coefficient Sv,u is the value of
the corresponding element Qv,u from the quantization table specified by the frame parameter
Tqi.” [12, p. 28] The quantized DCT coefficients Sqv,u are calculated by the following formula
which reduces the coefficient values by Qv,u.

Sqv,u = round (Sqv,u
Qv,u

) (3.1)

4. ”After quantization, the DC coefficient and the 63 AC coefficients are prepared for entropy
encoding.” [12, p. 15] The quantized DC coefficient of the previous block is used to predict the
current quantized DC coefficient, the difference is encoded. Differential encoding is not done
for the other 63 quantized AC coefficients but the 8x8 matrix is converted to a vector using a
static zig-zag pattern.

5. The quantized coefficients are then passed to the entropy encoding which compresses the data
further. For entropy coding, either Huffman coding or arithmetic coding can be used. The more
common one, Huffman coding replaces variable bit sequences by Huffman codes, dependent of
their frequency [12, p. 15].

ISO/IEC 10918-1 : 1993(E)

4.3 DCT-based coding

Figure 4 shows the main procedures for all encoding processes based on the DCT. It illustrates the special case of a single-
component image; this is an appropriate simplification for overview purposes, because all processes specified in this
Specification operate on each image component independently.

TISO0680-93/d004

DCT-based encoder8 × 8 blocks

FDCT Quantizer Entropy
encoder

Table
specifications

Table
specifications

Source
image data

Compressed
image data

Figure 4 – DCT-based encoder simplified diagram

FIGURE 4 [D04] 7 cm = 273 %

In the encoding process the input component’s samples are grouped into 8 × 8 blocks, and each block is transformed by
the forward DCT (FDCT) into a set of 64 values referred to as DCT coefficients. One of these values is referred to as the
DC coefficient and the other 63 as the AC coefficients.

Each of the 64 coefficients is then quantized using one of 64 corresponding values from a quantization table (determined
by one of the table specifications shown in Figure 4). No default values for quantization tables are specified in this
Specification; applications may specify values which customize picture quality for their particular image characteristics,
display devices, and viewing conditions.

After quantization, the DC coefficient and the 63 AC coefficients are prepared for entropy encoding, as shown in Figure
5. The previous quantized DC coefficient is used to predict the current quantized DC coefficient, and the difference is
encoded. The 63 quantized AC coefficients undergo no such differential encoding, but are converted into a one-
dimensional zig-zag sequence, as shown in Figure 5.

The quantized coefficients are then passed to an entropy encoding procedure which compresses the data further. One of
two entropy coding procedures can be used, as described in 4.6. If Huffman encoding is used, Huffman table
specifications must be provided to the encoder. If arithmetic encoding is used, arithmetic coding conditioning table
specifications may be provided, otherwise the default conditioning table specifications shall be used.

Figure 6 shows the main procedures for all DCT-based decoding processes. Each step shown performs essentially the
inverse of its corresponding main procedure within the encoder. The entropy decoder decodes the zig-zag sequence of
quantized DCT coefficients. After dequantization the DCT coefficients are transformed to an 8 × 8 block of samples by
the inverse DCT (IDCT).

4.4 Lossless coding

Figure 7 shows the main procedures for the lossless encoding processes. A predictor combines the reconstructed values of
up to three neighbourhood samples at positions a, b, and c to form a prediction of the sample at position x as shown in
Figure 8. This prediction is then subtracted from the actual value of the sample at position x, and the difference is
losslessly entropy-coded by either Huffman or arithmetic coding.

CCITT Rec. T.81 (1992 E) 15

Figure 3.1: DCT-based encoder simplified diagram [12, p. 15]

Beside the act of actual compressing the image data, it is important to define how a multi com-
ponent image, like RGB, is read. ”In sequential mode, encoding is non-interleaved if the encoder

Bernhard Schildendorfer, BSc., is101510 22

Information Security

compresses all image data units in component A before beginning component B, and then in turn all
of B before C. Encoding is interleaved if the encoder compresses a data unit from A, a data unit from
B, a data unit from C, then back to A, etc.” [12, p. 19] ”Related to the concepts of multiple-component
interleave is the minimum coded unit (MCU). If the compressed image data is non-interleaved, the
MCU is defined to be one data unit. [...] If the compressed data is interleaved, the MCU contains one
or more data units from each component.” [12, p. 21]

3.2 Operation modes
The JPEG compression can be used in four different ways called operation modes [12, p. 17f]. In
each of these modes a subset of the above described compression processes are used:

1. Sequential DCT-based: This mode uses exactly the processes described in section 3.1 and is
also called ”baseline mode”. Every block of the source image data is encoded and sequentially
written to the image data. Since only the DCT-coefficients of the current block needs to be
stored in memory, it minimizes the size of the needed buffer.

2. Progressive DCT-based: The image is encoded in multiple scans. Like the sequential mode,
8x8 blocks are transformed using DCT, but instead of entropy coding the resulting coefficients,
they are stored in an image-sized coefficient memory buffer. After cosine transform of the
whole image and before entropy coding, one of the following actions is applied to the stored
coefficients:

spectral selection: Different parts of the frequency spectrum are stored within scans.
The first scan contains all DC coefficients and some AC coefficients. All remaining AC
coefficients are stored in the other scans.

successive approximation: The image is not split up by its frequencies but by its resolu-
tion. Therefore, the first scan contains a specified count of the most significant bits (MSB)
of the coefficients, whereas the following scans contain the differences to the MSBs. This
results in a low resolution image in the first scan which will be successive upsampled with
each further scan.

3. Lossless: The lossless compression doesn’t make use of DCT or quantization but still uses
entropy coding for compression since this can be decoded without loss of information.

4. Hierarchical: The image is encoded at multiple resolutions. First, the image gets downsampled
to the lowest desired resolution and encoded. Afterwards the low resolution image is upsampled
to various resolutions and the difference to the original image is stored in different scans. This
allows applications fast computation of different image resolutions.

Bernhard Schildendorfer, BSc., is101510 23

Information Security

3.3 Structure of the stored data
As we have seen in the previous section, JPEG compression can be used in many different ways.
To ensure compatibility between the encoding and decoding entities, meta information needs to be
stored within the JPEG file. The JPEG standard defines a broad set of so called ”markers” which
define the start of a certain meta information entity. A marker usually follows the type-length-value
(TLV) principle, providing first the marker type then the length of the information entity, storing the
actual information at the end. Table 3.1 shows a shortened list of all JPEG marker, which will be
referenced later.

Code Assignment Symbol Description
0xFFC4 DHT Define Huffman table(s)
0xFFCC DAC Define arithmetic coding conditioning(s)

0xFFD0 - 0xFFD7 RSTm Restart with modulo 9 count ”m”
0xFFD8 SOI Start of image
0xFFD9 EOI End of image
0xFFDA SOS Start of scan
0xFFDB DQT Define quantization table(s)
0xFFDC DNL Define number of lines
0xFFDD DRI Define restart interval
0xFFDE DHP Define hierarchical progression
0xFFDF EXP Expand reference component(s)

0xFFE0 - 0xFFEF APPn Reserved for application segments
0xFFF0 - 0xFFFD JPGn Reserved for JPEG extensions

0xFFFE COM Comment

Table 3.1: ”Marker code assignments” [12, p. 32]

The JPEG standard defines a certain order in which these marker and their consecutive data are
allowed to occur. Figure 3.2 shows a general overview of the JPEG structure as a syntax diagram.
It can be seen that the only values which need to be the same in every image is the ”Start of Image”
(SOI) marker and the ”End of Image” (EOI) marker. The structure of a JPEG file can be separated
into a header part and the content part which is called ”frame”. The double bordered elements in
Figure 3.2 aren’t specific markers but place holders for different kind of markers shown in annex
A.2. For example, the element ”Tables/miscellaneous” can contain multiple different markers like a
quantization table (DQT) or Huffman table (DHT). All of these markers are followed, like described
previously, by a header which contains a length field and different attributes. It can be seen that an
analysis of these elements needs a deep knowledge of the JPEG specification.

Bernhard Schildendorfer, BSc., is101510 24

Information Security
ISO

/IEC
 10918-1 : 1993(E)

TISO0980-93/d034

EOISOI

DHP

EXP

ECSi

DNL

Abbreviated format for table-specification data

Hierarchical mode

Tables/
miscella-

neous

SOFn

Non-expansion
of reference
components

SOS

Multi-frame

Multi-scan

From second
scan to last,
first scan when
number of lines
defined correctly
in frame header

ECSlast
Restart not enabled

i=0 to last-1

Restart enabled

RSTi(modulo 8)

Non-hierarchical mode

Figure B.16 – Flow of compressed data syntax

Tables/
miscella-

neous

Tables/
miscella-

neous

Figure à l'italienne B.16 [D
34], = 21 cm

 = 821.%

48
C

C
ITT R

ec. T.81 (1992 E)

Figure 3.2: Flow of compressed data syntax [12, p. 48]

3.3.1 JPEG header
The term ”JPEG header” is not an official term defined by the standard, but is used in this thesis to
denote all data structures in the beginning of the JPEG file which contain general meta information.
Examples for such data structures are markers which are allowed in the syntax element ”Tables/mis-
cellaneous” like quantization tables (DQT), Huffman coding tables (DHT) or a comment section
(COM). The application markers (APPn) have a special status in the JPEG header. They can be used
by applications to store their proprietary information within the JPEG image. Also container formats
like JFIF, described in section 3.4, make use of an application marker to allow compatibility across
heterogeneous systems. In valid JPEG files, the application marker APP0 must directly follow the
SOI marker. The JPEG header also specifies the compression indirectly. Instead of storing the infor-
mation whether the mode is progressive or sequential, the chosen marker make it possible to conclude
the mode. For example, if the baseline sequential mode is used, the marker SOF0 (0xFFC0) is used,
whereas SOF2 (0xFFC2) is used for the progressive mode.

3.3.2 JPEG frame
A frame specifies exactly one image in a defined resolution. Although it is possible that multi-
resolution image files, using the hierarchical mode, store more than one frame, mainly the sequential
and progressive mode are used, storing only one frame. The frame is described with a ”start of
frame” marker followed by meta information of the frame. Like in the JPEG header, every frame can
additionally contain its own tables like quantization or Huffman table, which are used only for this

Bernhard Schildendorfer, BSc., is101510 25

Information Security

frame. After frame definition, the ”start of scan” marker (SOS) signals the beginning of the actual
compressed data. A frame can contain more than one scan. Since the structure of JPEG is highly
dependent on those marker bytes, it needs to prevent valid marker to occur unintentionally in the
compressed image data. To circumvent random coincident, the procedure of ”byte-stuffing” is used,
inserting a zero byte after each 0xFF byte. This results in the escape sequences 0xFF00 which are
reversed in the decoding process. [12, p. 91]

3.4 The interchange format
The JPEG standard claims the need of a so called ”interchange format” [12, p. 25], which extends the
file in a way to exchange JPEG bitstreams between a wide variety of platforms and applications. The
most common interchange formats for JPEG are Exif, which is heavily used in digital photography
and the JPEG File Interchange Format (JFIF). Since JFIF is defined as the default interchange format
for the MIME type JPEG by RFC2046, it is mainly used for an exchange of images over the internet
[34].

3.4.1 JPEG File Interchange Format (JFIF)
JFIF is a minimal file format to fulfill the requirements of a JPEG interchange format. It adds addi-
tional attributes to a JPEG file and allows the storage of a thumbnail within the image file. Addition-
ally, if JFIF is used, RGB can no longer be used as color space. Instead, it can be either grayscale
(one component) or YCbCr (luma/blue-chroma/red-chroma - three component). Technically spoken,
the JFIF data must start right after the start sequence of SOI and APP0 (0xFFD8, 0xFFE0). The
fields described in Table 3.2 are allowed to follow the APP0 marker.

3.4.2 Exchangeable Image File Format (Exif)
In 1998, the ”Exchangeable Image File Format” (Exif) was published by the Japan Electronic Industry
Development Association [36, p. 1] to ensure data compatibility and exchangeability for image data
recorded by digital cameras. Beside image data, the Exif specification can also be used for audio
media but only the image file specification will be described in this section.

Figure 3.3 shows, how Exif is embedded into JPEG compressed image files. Like JFIF, the Exif
data is written in an application segment which starts with a APPn marker. In contrast to JFIF,
Exif uses the APP1 marker which must directly follow the SOI marker to comply with the JPEG
specification. As defined in the JPEG standard, the APP1 section is not allowed to exceed a length of
64 kB. The rest of the image file is like described previously. Various table definitions are stored after
the APP-marker followed by the frame header and the scan header(s) which contain(s) the compressed
image data.

Bernhard Schildendorfer, BSc., is101510 26

Information Security

Type Length Description
length 2 bytes Total APP0 field byte count, including the byte count value (2 bytes),

but excluding the APP0 marker itself
identifier 5 bytes 0x4A46494600 (String ”JFIF” with terminating zero)
version 2 bytes The most significant byte is used for major revisions, the least signifi-

cant byte for minor revisions. (e.g. 0x0102)
units 1 byte Units for the X and Y densities (0=pixel aspect ration; 1=dots per inch;

2=dots per cm)
Xdensity 2 bytes Horizontal pixel density
Ydensity 2 bytes Vertical pixel density

Xthumbnail 1 bytes Thumbnail horizontal pixel count
Ythumbnail 1 bytes Thumbnail vertical pixel count
RGBn 3n bytes Packed (24-bit) RGB values for the thumbnail pixels, n = Xthumbnail *

Ythumbnail

Table 3.2: JFIF attribute list [35, p. 5]

Since the Exif header has a variable size, its size is stored in the beginning of the header, followed
by an identifier code which stores the string ”Exif” followed by a terminating zero. Information about
the image such as image dimension, resolution or a thumbnail is stored using the ”Tagged Image File
Format” (TIFF), which uses a list of predefined tags to store meta data. The TIFF tags are stored in
a maximum of two IFD (Image File Directory) sections, whereas IFD0 describes the primary image
and IFD1 the optional thumbnail. At the end of the Exif header, an optional JPEG thumbnail can be
embedded. Except the missing APP-marker, the thumbnail follows the normal JPEG specification.
Due to the huge amount of possible TIFF tags and Exif meta information, defined in the standard [36,
p. 17ff], a description will be omitted.

Bernhard Schildendorfer, BSc., is101510 27

Information Security

- 16 -

Fig. 7 Structure of Exif file with compressed thumbnail

SOI

APP1

DQT

DHT

SOF

SOS

Compressed Data

Exif Compressed File

APP1 Marker

Length

TIFF Header

0th IFD

Exif IFD

1st IFD
JPEGInterchangeFormat
JPEGInterchangeFormatLength

JPEG Thumbnail

Exif

APP1 Marker

EOI

SOI

DQT

DHT

SOF

SOS

Compressed Data

Compressed Thumbnail

EOI

Figure 3.3: ”Structure of Exif file with compressed thumbnail” [36, p. 16]

Bernhard Schildendorfer, BSc., is101510 28

Information Security

Proposed JPEG file carver

This chapter presents the algorithms and methods used for carving fragmented JPEG files. Instead
of reinventing a file carver, the proposed JPEG file carver extends the capabilities of the ”multimedia
file carver” presented by Poisel et al. [37, p. 26]. First, the general architecture of the multimedia file
carver will be described, outlining the proper interfaces, which can be used to extend the file carver
with file type specific carving capabilities, like for JPEG. The second part of this chapter shows in
great detail how the multimedia file carver is extended in order to support JPEG files and which
algorithms are used to do so.

4.1 Architecture of the file carver
The architecture of the multimedia file carver is based on smart carving, proposed by Pal and Memon
[3, p. 67] and shown in Figure 4.1. The tasks of these steps are not described in this chapter, since
it is already described in great detail in chapter 2.1.4. The JPEG file carver will extend the steps of
the architecture in a way to enhance its capabilities for JPEG file carving. Because ”preprocessing”
and ”postprocessing” are independent steps in respect to the file type, they won’t be, in contrast to
”Collation” and ”Reassembly”, subjects of the JPEG file carver. This section will focus on a gen-
eral overview of the technical architecture, provided by class diagrams and description of important
interfaces supported by the multimedia file carver.

4.1.1 General overview
The multimedia file carver is publicly available under the GNU Lesser General Public License v3.0
[8] and is programmed in Python and C. As described in a feasibility study of Poisel and Tjoa [38, p.
58f], software from the following projects is used to extend the capabilities of the file carver:

PySide offers the ability for platform independent rapid prototyping in Python. The graphical
user interface for visualizing the carving results is developed by using this library.

ffmpeg is used in the original multimedia file carver for decoding video data. It supports all
major video formats like MPEG-4 H.264, FLV H.264 and WebM VP8. This library is not used

Bernhard Schildendorfer, BSc., is101510 29

Information Security

Advanced File Carving Approaches for Multimedia Files Poisel, Tavolato and Tjoa



























































Figure 1: Extended “SmartCarving” architecture derived from Pal and Memon [39]

Reassembly : In this step the fragmentation points of unrecovered files are determined. Further, during
this process fragments are re-ordered and merged in order to obtain the original files. Up to now the
reassembly of fragments has been optimized for JPEG-files. For this purpose several approaches have
been proposed.

Pal and Memon [38] proposed the application of the Parallel Unique Path (PUP) algorithm to re-
order fragments. Their approach was not optimized to the way how file systems actually fragment files.
Therefore they and others proposed the addition of “Sequential Hypothesis Testing” (SHT) to the PUP
algorithm in a later paper [40]. SHT tests adjacent blocks from a storage medium to be in sequence.
A weighting function determines if the investigated blocks which are tested in sequence are part of the
fragment in question. Based on the results of the weighting function the outcome of the hypothesis (SHT)
can be determined: the blocks belong in sequence to the fragment (H1) or they do not belong in sequence
to the fragment (H0). Once the fragmentation point is reached the PUP algorithm is applied to determine
the starting point of the next fragment. Garfinkel [19] showed that the gap between file fragments is
rarely larger than 80 blocks. Based on that fact the PUP algorithm has further been optimized [40]. The
extension is known as “close region sweep” and tries to decode a few blocks in an area around header
fragments. Optimized approaches for finding the fragmentation points of JPEG files has been discussed
by Karresand ([26] and [28]). Yoo et al. [54] discussed the recovery of multimedia files using the file
carving approach from compressed NTFS partitions.

Metz and Mora [32] presented an open-source implementation of the smart carving architecture
as part of their submission to the DFRWS 2006 challenge. Their tool “ReviveIt” can be configured
to support the recovery of text-based file formats such as the Portable Document Format (PDF). An
overview of the possibilities for post-processing multimedia files in the field of digital forensics has been
proposed by Poisel and Tjoa [42].

3 File Carving of Multimedia Files

In this section we discuss existing considerations of former file carving approaches and how these con-
cepts are integrated in our file carver for the recovery of multimedia files. It is structured into the gen-
eration of test-data as well as the constituent parts of a Smart Carver which has been extended by post
processing procedures.

5

Figure 4.1: ”Architecture of the multimedia file carver” [8, p. 26]

for carving JPEG files, but still needed to support forensic analysis of video data.

Python Imaging Library (PIL) is heavily used by the proposed JPEG file carver to calculate
candidate weights between two carved JPEG file fragments. It offers the ability to decode JPEG
files and perform comparisons on a pixel basis.

The Sleuth Kit (TSK) is a well known forensic toolbox which extends the system with useful
forensic commands. It is used in the preprocessing step of the file carving process to identify
file system structures.

4.1.2 Architecture
The architecture of the program is strongly oriented to the smart carving architecture shown in Figure
4.1. As the file carver is mainly programmed in Python, each file carving step is encapsulated in a
module of the same name to ensure modularity and clarity. Class diagrams will show the architecture
of the modules, additional flow charts will visualize their functionalities and internal relations.

4.1.2.1 Preprocessing

The preprocessing phase is in charge of preparing the media for further file carving activities. The
corresponding module mainly consists of two contexts, preprocessing and fsstat, which can be seen in

Bernhard Schildendorfer, BSc., is101510 30

Information Security

the class diagram of Figure 4.2. The second context, fsstat_context, uses ”The Sleuth Kit” to retrieve
media information of the file system (CFsStatContext) and stores it into the class CFsOptions
which is returned to the caller. The preprocessing context starts the actual preprocessing steps with the
class CResultThread and CPreprocessing. It shall be remarked, that CPreprocessing
initiates the collation phase after successful preprocessing. This is done due to performance reasons.

Figure 4.2: Class diagram of the preprocessing phase

4.1.2.2 Collation

The collation module classifies data clusters by their file type. It additionally groups them into frag-
ments to increase the performance of the reassembly phase. Since the classification algorithm and
the information storage for every cluster is very computational and memory intensive, it is written
in C to increase the performance of these tasks. Figure 4.3 shows a class diagram of the collation
module. The shared object libblock_reader.so contains the C-functions for the classification
and is accessed by the Python class CFragmentClassifier, which gets, as already described
before, called by the class CPreprocessing. The architecture behind the shared object will be de-
scribed later. The classes FileType, CFragmentStruct, ClassifyT, CBlockOptions and
CFragmentCollection are needed to exchange data with the shared object, which defines the
same objects as struct data types. If CFragmentClassifier classifies the media using the shared
object libblock_reader.so, it receives classified blocks which are grouped to fragments, stored
in the collection class CFragments.

Bernhard Schildendorfer, BSc., is101510 31

Information Security

Figure 4.3: Class diagram of the collation phase

For a better understanding of the file carver’s classification mechanisms, we need to take a closer
look at the used shared object, which is visualized in Figure 4.4. libblock_reader.so combines
different c files and shared objects which shall be explained here clearly:

Bernhard Schildendorfer, BSc., is101510 32

Information Security

block_reader.c calls all of the next functions. It classifies first the blocks of a given media
using the implemented classification algorithms in fragment_collection.c, storing a
map of the blocks in block_collection.c. These blocks are passed to fragment_
collection.c in order to group them into fragments.

fragment_classifier.c needs to get initialized first to define for which data types
should be classified. The more data types are searched for, the more complex the analysis
becomes. After initialization, blocks are analyzed for file type specific features, using algo-
rithms described in section 4.2. As an example for a classification algorithm, the fragment
classifier uses entropy.c to calculate the block’s entropy, to make a classification decision.

fragment_collection.c is called by the block_reader.c and receives a set of blocks
which are grouped as fragments. These fragments are then returned to the calling Python class
and used for the file reassembly.

4.1.2.3 Reassembly

In the third step of the smart carving procedure, the identified fragments are reassembled to their
original files. To do so, the fragments are compared to each other. The resulting candidate weights
are used by the Parallel Unique Path (PUP) algorithm to retrieve the correct order.

Basically, the reassembly module is designed to support different reassembly algorithms. To ex-
tend the file carver with a new algorithm, the base class CReassembly needs to be derived and
assemble_impl implemented. CReassemblyPUP is such a derived algorithm, which imple-
ments the Parallel Unique Path (PUP) algorithm. Since the algorithm needs to know how to compare
the file type specific fragments to each other, it needs a file type handler at runtime, which does the
file type specific work. As an example, if the user chooses to reassembly JPEG, the file carver first
creates an object of CJpegHandler, which has the ability to compare JPEG fragments to each other
and do JPEG specific operations like analyzing the JPEG meta information. This file type handler is
passed to the constructor of the reassembly algorithm CReassemblyPUP. As you can see in Figure
4.5, the CAbstractFileTypeHandler requires to implement three methods which are needed
for a composition with the reassembly algorithm. prepareFiles is called at the beginning of the
reassembly algorithm, initializing the header fragments and reassembly paths. As already described,
compareFrags is the essential method for fragment comparisons which is used by the reassembly
algorithm to calculate the candidate weights.

Another feature of the reassembly module is the abstraction of file reassemblies (also called frag-
mentation paths) as a file of the given data type. This is done by adding arbitrary file fragments,
starting with the header fragment, to the suitable file type specific child of CFile. Since the compar-
ison function of the reassembly algorithm is implemented to receive a CFile object and a fragment,
it is possible to compare a whole fragmentation path with a new fragment, allowing more versatile

Bernhard Schildendorfer, BSc., is101510 33

Information Security

Figure 4.4: Diagram of the C shared objects used for fragment classification

comparison methods. This feature is also necessary for JPEG comparison since it is impossible to se-
mantically compare two JPEG fragments without contextual information like the Huffman encoding
or DCT-coefficients to each other.

The next file type specific class is the decoder. It is used to properly read and write encoded files
like H.264 or JPEG and is also suitable to convert media files to another media format. For example,
the CJpegDecoder allows easily to write a JPEG file as a bitmap (BMP). This can be necessary for
easy access of the media data without using a JPEG decoder again.

Bernhard Schildendorfer, BSc., is101510 34

Information Security

Figure 4.5: Class diagram of the reassembly phase

4.1.3 Workflow
Section 4.1.2 showed the architecture of the multimedia file carver in form of class diagrams. In this
section concentrates on presenting the overall program flow of the file carver. Figure 4.6 shows a very
simplified flow diagram of the whole program. It is reduced to the absolute core functions to ensure
an overview. Vertically it is segmented into the smart carving phases to give an understanding how
the interact with each other.

The class CContext is responsible for starting as well the graphical user interface (GUI) and
the carving phases. Therefore it could be called the entry point and main loop of the program.
After starting the GUI, the user can specify a data storage media for the forensic analysis, choose
a supported file type and configure the algorithms used in the smart carving phases. If the user
chooses to classify, the runClassify() method of the class CPreprocessing is called. Be-

Bernhard Schildendorfer, BSc., is101510 35

Information Security

Start

Reassemble the
fragments, using the

file type specific
handler class

CReassemblyPUP

Get a handler for
specific JPEG

operations

CJpegHandler

Preprocess
Get Media Info

CPreprocessing

Python Wrapper for C
classification library

CFragmentClassifier

Draw the GUI

Classify clusters

libblock_reader.so

classify()

Preprocess?

Classify?

Initiate reassembly

classify()runClassify()

YesNo

Yes

No

ReassemblyCollationPreprocessorMain Context (CContext)

assemble()

Figure 4.6: Workflow of the file carver, carving a disk image for JPEG files

fore classifying, the preprocessor gathers media information for the later processing. Afterwards,
CFragmentClassifier.classify() is called, which calls the proper native C functions for
a block classification. In this phase, the data blocks (clusters) are analyzed for the specified file type.

Bernhard Schildendorfer, BSc., is101510 36

Information Security

Classified blocks are also grouped to fragments and returned to the main context CContext. In
the next step, if chosen by the user, the identified fragments are reassembled. To do so, an object of
CJpegHandler is created, which has the ability to compare JPEG fragments to each other and do
JPEG specific operations like analyzing the JPEG meta information. This file type handler is passed
to the constructor of the reassembly algorithm CReassemblyPUP. The method reassemble()
is invoked of this class, which returns after finishing the reassembling process.

4.2 Specification of the collation algorithm
Like already described in chapter 2.2, collation algorithms are used to determine the file type of a
data cluster. Since a data cluster is usually a very small unit of information, the classification decision
is error prone. The quality of a collation algorithm is defined by its ability to correctly identify
the file types of clusters while minimizing the amounts of false-positives. Roussev [14, p. 12] and
Veenman [15, p. 397] stated that only a file type specific algorithm is able to achieve highly reliable
classification. Because of this conclusion, the collation algorithm described in this chapter uses a
feature based algorithm which is optimized for JPEG file type identification.

Beside the feature based algorithm, the entropy of the fragments is used to quickly reject frag-
ments. The entropy describes the amount of information hold by the data. Like MPEG or ZIP, JPEG
is a compressed data format with a very high entropy value. This means that n bits of a high entropy
file stores more information than the same amount of bits in a low entropy file type. If we want to
identify JPEG file types, we can test the hypothesis of a high entropy like shown in listing 4.1

1 lEntropy = calc_entropy(pFragment, pLen);
2 if (lEntropy > 0.9)
3 {
4 pResult->mType = FT_HIGH_ENTROPY;
5 pResult->mStrength = 1;
6
7 // -- Additional check for JPEG is done here! --
8 }
9 else
10 {
11 pResult->mType = FT_LOW_ENTROPY;
12 pResult->mStrength = 1;
13 }

Listing 4.1: fragment_classifier.c

Chapter 3.3.2 showed already that the JPEG file format is organized by distinct byte sequences
called ”marker” which can be used for classification. All of these markers consist of two bytes, of
which the first one has always the decimal value 255. The second byte describes the type of marker,
ranging from 0xC4 to 0xFE. Additionally, 0xFF00 is used as escape sequence for a 0xFF byte in
the compressed image data. Since this escape sequence occurs very often within the image data, it
can be used as a reliable JPEG feature to search for. Because this feature could also occur in other non

Bernhard Schildendorfer, BSc., is101510 37

Information Security

JPEG fragments, another feature is needed to improve the reliability of the algorithm. As previously
described, only a little part of the possible marker range is actively used as control sequences. All
other markers, 0xFF01 to 0xFFC3 and 0xFFFF are not specified by the standard and therefore
should not occur. This behavior is used to create a negative feature, rejecting all clusters from the
classification algorithm which contains one of these illegal markers.

The decision tree for classifying data, using the previously specified features is shown in Figure
4.7 as a flow diagram. It can be seen that as soon as an illegal JPEG marker is identified, the data is
disproved to be image data. Listing 4.2 shows how this algorithm is implemented in the programming
language C.

Has "B" the
value 0xFF?

Classify JPEG

Get Byte "B"

Count the value of the next
Byte (JPEG marker)

YesNo Has the marker
an illegal value?

Data is not of type
"JPEG"

Yes

No

More bytes
available?

Occured the
sequence
0xFF00?

Data is not of type
"JPEG"

Data is of type
"JPEG"

No Yes

Yes

No

Figure 4.7: Flow diagram of JPEG classification

Bernhard Schildendorfer, BSc., is101510 38

Information Security

1 for (lCnt = 0; lCnt < pLen - 1; lCnt++)
2 {
3 if (pFragment[lCnt] == 0xFF)
4 {
5 /* these usually occur in JPEG file fragments */
6 if (pFragment[lCnt + 1] == 0x00)
7 {
8 lCntJpeg++;
9 }
10 /* illegal sequence in JPEG files */
11 else if (pFragment[lCnt + 1] < 0xC0 || pFragment[lCnt + 1] > 0xFE)
12 {
13 lCntJpeg = 0;
14 break;
15 }
16 }
17 }
18
19 if (lCntJpeg > 0)
20 {
21 pResult->mType = FT_JPG;
22 pResult->mStrength = 1;
23 return pResult->mStrength;
24 }

Listing 4.2: Source code for JPEG classification

4.3 Specification of the reassembly algorithm
The reassembly algorithm follows the collation algorithm and brings the identified fragments back
into the correct order. Although the reassembly of fragmented files seems to be a simple task, it needs
various error-prone tasks to achieve this goal. Firstly, the reassembly can only work with fragments,
but the collation algorithm does only result a list of classified blocks. Therefore, the first step for a
correct reassembly is to group blocks to fragments of the specified file type, which is called ”Group-
ing”. If the fragments are grouped together correctly, they can be passed to the reassembly algorithm,
which has the task to find the correct order of fragments, based on comparisons between themselves.
The efficiency of the reassembly algorithm has a major effect to the computational complexity and
processing time of the overall carving process. Since the fragment comparisons of the reassembly
phase are highly dependent on the file type, a file type specific comparison algorithm has to be im-
plemented which is called ”weighting”. This weight represents the visual similarity of two JPEG
fragments.

Bernhard Schildendorfer, BSc., is101510 39

Information Security

4.3.1 Grouping
The grouping approach for building fragments out of classified data clusters was designed by Poisel
et al. [37, p. 8f]. It builds one key feature of the multimedia file carver and is used for carving
fragmented JPEG files.

File type classification contains the risk of determining the file type wrongly, resulting in false
negative classifications. Therefore, grouping is needed as a fault tolerance mechanism to be able to
create fragments even if a cluster in between is wrongly classified. According to Garfinkel [9, p. 4],
it is very unlikely that a file is fragmented into many parts with sizes of only a few sectors. This is the
reason why clusters with the same file type, which are close together, are grouped into fragments. To
control the grouping algorithm, Poisel describes two parameters, the ”block-gap” and the minimum
fragment size.Advanced File Carving Approaches for Multimedia Files Poisel, Tavolato and Tjoa

 

 

 





Figure 2: Summary of fragments

depend on the characteristics of the underlying file system. Our file carver considers two parameters:
“block-gap” and the minimum fragment size.

The “block-gap” determines the number of blocks that are counted to the surrounding fragments,
even if they are of different file type. An example is shown in Figure 2A. “Gap 1” is less or equal the
“block-gap” (predetermined to be two blocks). It is therefore counted to Fragment 1 (see Figure 2B). Gap
2 is bigger than the “block-gap”. Fragments before and after this gap are counted to different fragments
(Fragment 2 and Fragment 3). In contrast to the scenario described before, fragments are broken up at
the position where header blocks are identified. This scenario is shown in Figure 2B between Fragment
1 and Fragment 2.

The minimum fragment size refers to the minimum number of blocks that make a fragment. In Figure
2B Fragment 3 would be excluded from further analysis in case the minimum fragment size would have
been predetermined to be two blocks. Fragment 2 would still be in for the reassembly process as it is
a header fragment containing information in its header which could be necessary to decode other non-
header fragments which meet the requirements for fragments.

Determining the reassembly order In the next step the reassembly order of fragments is determined.
A simple approach is the comparison of all header fragments with all non-header fragments. In this
case all permutations have to be calculated and the weight between fragments is not determined. Every
permutation that can be decoded is valid. This simple approach has already been discussed by Garfinkel
[19] and it has several disadvantages. It is possible that a decoder is able to decode wrong permutations.
This fact depends on the error resistance of the decoder. It is possible that a header and a non-header
fragment from different multimedia files can be decoded because their internal structures which describe
the video format fit syntactically together.

Further, depending on the total number of header and non-header fragments in the investigated image,
the total number of combinations can be tremendous. Equation 2 shows the formula to calculate the
number of permutations with a given number of header (H) and non-header (F) fragments. To calculate
the complexity of this approach, the number of header and non-header fragments is simplified as n

9

Figure 4.8: Summary of fragments [37, p. 9]

The ”block-gap” specifies, by how many blocks a fragment is allowed to be separated, until they
are considered as two different fragments. If the blocks in between are less then the ”block-gap”,

Bernhard Schildendorfer, BSc., is101510 40

Information Security

they are assumed to be false negatives and classified like the surrounding ones. Figure 4.8A shows
an example for this algorithm. Assuming a block-size of two, ”Gap 1” would be considered as wrong
classification and added to the surrounding blocks, forming ”Fragment 1”. Because ”Gap 2” is too
big, it separates ”Fragment 2” and ”Fragment 3” from each other.

The second parameter, minimum fragment size refers to the minimum number of blocks that make
a fragment. A minimum fragment size of three would prevent ”Fragment 3” to be considered in the
further reassembly process. Although ”Fragment 2” has the same size, it is a valid fragment because
it is a header fragment.

4.3.2 Weighting
To be able to build up a graph which represents the optimal reassembly of the given fragments, weights
have to be assigned between the fragments to describe the likelihood how well they fit together.
Assuming there are i header fragments Hi and j non header fragments Fj , the weight is calculated
by applying W (Hi, Fj). Because of the nature of the JPEG file format, a weights calculation of two
non header fragments can’t be done. This is reasoned because the data can’t be analyzed due to the
lack of information necessary for decoding like quantization tables or entropy coding tables. If a file
has more than two fragments, Hi specifies both the header fragments and the identified fragments
belonging to this header fragment. A comparison should only succeed if both Hi and Fj belong to
each other and all data between those two fragments is correctly in place. Again, this may only be
true for the JPEG file type because not all file types are as dependent on their context as JPEG.

A comparison between JPEG fragments requires the ability to decode the fragments. As described
in chapter 3.3, a JPEG image contains the compressed image data as well as the meta information
needed to decode it. For example, the quantization table is needed to revert the discrete cosine trans-
form. If this information is not in place, the fragment can’t be decoded and therefore not analyzed
within the weighting process. This problem is solved by adding the non header fragment to the end
of the header fragment like shown in Figure 4.10. Using this method, it is possible to compare the
image data of the header fragment and the non header fragment. Since the multi component image
data is mostly stored interlaced, which means that the bytes holding the color information iterate, the
color channels can shift for the rest of the image if some data is missing (see Figure 4.9). Therefore,
it is very likely that a comparison fails even if less image data is missing.

The weight between two JPEG fragments can be calculated using various approaches. Although
not all of these methods are implemented in the file carver, they can be combined and may improve
the reliability of the weighting score:

Histogram intersection: using this approach, the distribution of the image values of two image
segments are compared. The more similar two images are, the less differences can be seen in
the histogram, which allows the easy calculation of a weight. If the fragments belong to each
other, the difference should be minimal. The big problem of this algorithm is, if data is missing

Bernhard Schildendorfer, BSc., is101510 41

Information Security

Figure 4.9: Intense image corruption, caused by a missing small file fragment

in between, the second fragment is shifted which has influence to its image positioning and
color. Another problem exists if the fragment is very small (e.g. one cluster). A correct pattern
matching is not possible since the small amount of data can’t be correctly decoded.

Pixel matching: compares the bordering pixels of two image segments to each other. Based on
the average differences of the pixel color values, the similarity of the images can be calculated.

Pattern matching: analyzes like histogram intersection the decoded image data of the frag-
ments. It identifies distinct structures, which spread across the comparing fragments. The
algorithm analyzes, whether the comparative fragment complies to the identified geometrical
constraints of the second fragment. It is assumed that the graphical analysis of image fragments
cause a high computational effort.

Huffman decoding: can not be used to calculate a weight but could be helpful to quickly
reject fragments. The stored image data is usually compressed using Huffman coding. For a
correct decompression, the correct Huffman table, stored in the header fragment, is mandatory.
Assuming that JPEG files have different Huffman tables, which are not compatible to each
other, they can be used to validate the data of the second fragment. The Huffman symbols in
the second fragment need to comply with the stored Huffman table in the first fragment. For
this approach, a Huffman decoder needs to be implemented or adapted.

Bernhard Schildendorfer, BSc., is101510 42

Information Security

4.3.2.1 Histogram intersection

In respect to the computational performance and the goal for a general approach, the file carver was
first implemented to use histogram intersection for the calculation of weights between file fragments.
To explain the algorithm, it is assumed to have two multiple fragmented image files, of which one
shows colorful juggling balls with an image resolution of 800 x 600 pixels. Assuming to have the
header fragment of the ball picture A, a non-header fragment B and the reassembled image C, the
algorithm is as follows:

1. Choose the header fragment as fragment A

2. Decode A

3. Determine the image cut and the image fragmentation point

4. Generate image C by attaching B to A

5. Decode C

6. Get the last 8x8 block line of A (until the cut) and the first 8x8 block line of C

7. Calculate a histogram intersection of both lines

8. The result is the weight which can be used for a reassembly decision

Depending whether fragment B is the correct consecutive fragment of A, the resulting image C
can either be an incorrect reassembly or a correct one like both shown in Figure 4.10 and 4.11.

Figure 4.10: Incorrect reassembly Figure 4.11: Correct reassembly

The main purpose of the weights calculation algorithm is to assign a high value to a correct
reassembly and a low value to an incorrect reassembly to tell them apart. This activity is done by

Bernhard Schildendorfer, BSc., is101510 43

Information Security

steps 3 to 8 and will be now shown in greater detail. To be able to perform a histogram intersection,
it is important to know where the image data of the header fragment ends and where the data of the
second fragment start starts. This image cut is shown in Figure 4.12 and described by the x- and
y-axis coordinates of the first pixel outside the image data, called image fragmentation point. This
should not be confused with the fragmentation point which describes the end of the binary fragment
data instead of the graphical data.

After identifying the graphical end of the header fragment, the comparative fragment is attached
to the end resulting in the larger image C. Figure 4.10 shows C with an incorrect fragment, Figure
4.11 the correct one. Instead of calculating the histogram intersection for the whole image, only the
image data adjacent to the image cut is used. This is based on the assumption that image areas have
a higher correlation in the histogram the closer they are. This assumption can be easily visually seen
since the pixels have little color changes in respect to their quantity. To exploit this theory, only the
last image line of A is compared to the first image line of B. The height of the line is specified by the
JPEG standard.

Figure 4.12: Determining image fragmen-
tation point Figure 4.13: Selecting the image lines

In the last step, the histograms of both image lines need to be calculated and compared to result a
weight. The histogram counts how often all possible color values of an image occur. Has an image
three color channels with a color depth of 256 values each, it returns three times 256 counters how
often each value occurs. This can be calculated for each fragment and compared. Listing 4.3 shows
how it is implemented. The variable lWeight gets every time increased if the difference between
both histograms for a distinct value is lower than pSimilarity. Therefore, the similarity value,
which can be freely chosen between 2 and 256, influences how tight the histogram intersection is.
The lower the value is, the more similar both fragments need to be to increase the weight.

Bernhard Schildendorfer, BSc., is101510 44

Information Security

1 lWeight = 0
2 for lIdx in xrange(len(lHist1)):
3 if abs(lHist1[lIdx] - lHist2[lIdx]) < pSimilarity:
4 lWeight += 1

Listing 4.3: reassembly_context.py

The histogram intersection can also be presented in a more generic way. Assuming W to be the
weighting function for the fragments A and B, and H to be the histogram function, Equation 4.1 shows
the weights calculation. The result of W(A,B) would not be the same than in the source code snippet
above, hence this formula should only present the general idea of the weights calculation.

W (A,B) =
255∑
n=0
|H(A)[n]−H(B)[n]| (4.1)

Experiments showed, that histogram intersection is too unreliable at distinguishing many different
images. This is caused by the fact, that only the average of a complete image line was compared,
eliminating all characteristic image features like edges. To overcome this disadvantage, the pixel
matching algorithm is used.

4.3.2.2 Pixel Matching

Pixel matching is a simple but effective algorithm, which compares the bordering pixels of the base
image and the comparative image together. The closer the image values of each pixels are, the higher
is the resulting weighting score. This algorithm starts after step 6 of the histogram intersection algo-
rithm. Instead of calculating the histogram of the complete line, only the neighboring pixels of the
base fragment line and the comparative fragment line are used. Figure 4.14 shows how these pixels
are compared. Depending on the color depth and color mode of the image, the file carver needs to
work with different pixel values. Therefore, the image gets converted to RGB color mode and the
resulting comparison weights are percentages based on color depth.

Listing 4.4 gives a closer look on how the algorithm is implemented. Because the image is very
likely to be fragmented within an image line, the fragment cut generates two image lines which need
to be compared. Line 1 iterates through both image lines. Afterwards (line 2-3), the pixels of the
according image line are iterated in their x-axis. Comparing this to Figure 4.14, pixels 1 to 5 will
be iterated in the first line and 6 to 7 in the second line. The first pixel of both the base fragment
and the comparative fragment are retrieved (line 4-7) and all color channels are compared (line 8-10).
The calculated score is the arithmetic mean of the color channel differences. To calculate the overall
arithmetic mean of all pixel scores, the amount of pixels needs to be count (line 11). The algorithm is
finished when the score is divided by the amount of pixels (line 13). The resulting comparison weight
is a percent value in respect to a perfect match.

Bernhard Schildendorfer, BSc., is101510 45

Information Security

Figure 4.14: Pixel matching algorithm, based on Pal [3, p. 65] which calculates the average difference
between the color values of bordering pixels

1 for lLineIdx in xrange(2):
2 for lX in xrange(lBaseFragmentLine[lLineIdx][X1], \
3 lBaseFragmentLine[lLineIdx][X2]):
4 lPx1 = lBaseFragmentImage.getpixel((lX , \
5 lBaseFragmentLine[lLineIdx][Y2]))
6 lPx2 = lCompareFragmentImage.getpixel((lX ,\
7 lCompareFragmentLine[lLineIdx][Y1]))
8 lPIMScore += (abs(lPx1[0] - lPx2[0]) + \
9 abs(lPx1[1] - lPx2[1]) + \
10 abs(lPx1[2] - lPx2[2])) / 3
11 lPixels += 1
12 if lPixels != 0:
13 lPIMScore = lPIMScore / lPixels
14 #percentage of the possible score
15 return (2 ** lBits - lPIMScore) * 100 / \
16 (2 ** lBits)
17
18 return 0

Listing 4.4: Pixel matching algorithm in CJpegHandler

Equation 4.2 shows the algorithm in a more formal way. pbase refers to the selected pixels of the
base image, pcomp to the comparative image pixels and n the available amount of pixels. It can be
seen that the average difference of those pixels is calculated, resulting in an temporal score. The pixel
values are dependent on the color depth of the image and therefore range from zero to 2colordepth,
which is for a 8 bit image 256.

Bernhard Schildendorfer, BSc., is101510 46

Information Security

score =
∑p=n
p=0

∣∣∣pbasen − pcomparen

∣∣∣
n

 0 ≤ p ≤ 2colordepth (4.2)

The resulting score is not directly used as a candidate weight because the score is dependent on the
color depth of the image. Since different images could have different color depths (e.g. 8bit/16bit),
the weights could not be compared to each other. Therefore, an mathematical operation needs to be
applied, in order to transform the score to an uniform numbers range. As one can see in Equation
4.3, the score is transformed to a percentage value of the available color depth. Because the score
can range from zero to 2colordepth, it gets subtracted from 2colordepth resulting in a very high value for a
good match and a very low value for a bad match. Therefore, the candidate weight gives the similarity
as percentage value, where a perfect match would be indicate by 100%.

candidate weight = (2bits − score) · 100
2bits (4.3)

4.3.3 Reassembly algorithm
As we are able to semantically compare image fragments with each other, an efficient reassembly
algorithm needs to be found, in order to restore the correct sequence of fragments for a set of header
fragments. The sequence of reassembled fragments is called fragmentation path, which results in
an image file after a successful completion. Since the reassembly algorithm decides the order of
fragment comparisons, it has a major effect on the computational complexity.

For the JPEG file carver, the reassembly algorithm of the multimedia file carver, developed by
Poisel, Tjoa and Tavolato is used. It is based on the ”Greedy Parallel Unique Path” (Greedy PUP)
algorithm invented by Pal and Memon [23, p. 389]. Because of its graph based nature, the fragments
are represented by vertices, which are connected by their comparison weights. The goal of the al-
gorithm is to find as many unique paths in this graph as header fragments exists, while reducing the
weights to a minimum.

Figure 4.15 shows a simple example of the algorithm by reassembling two header fragments (H1
and H2) and three non header fragments (F1, F2 and F3). In the first steps (A and B), the fragments
are classified and sorted, to bring the header fragments to the beginning of the list. These actions are
not done in the reassembly phase, but are shown here to give a better understanding of the process.
In the next step (C), each header fragment (Hx) is compared to a non header fragment (Fx). The
file type specific comparison function calculates the candidate weights to determine the best match.
Since the algorithm is greedy, the best match (F2) is added to the reassembly path of H1, removing it
from the list of available fragments. At this point, a new feature is introduced to the algorithm. After
assigning a fragment to a fragmentation path, the new fragment is analyzed for file type specific footer

Bernhard Schildendorfer, BSc., is101510 47

Information Security

information. If it is a footer fragment, the fragmentation path is assumed to be completed, removing
it completely from the reassembly algorithm. The analysis for footer information is highly file type
specific and can already be done in the classification phase. The analysis for footer information
reduces the overall amount of necessary comparisons because the reassembly path can be removed
very early from the reassembly algorithm. This can be seen in step (D) of Figure 4.16, where H1 and
F2 are reassembled to ”File 1” and no longer considered in the comparisons. Steps (E) and (F) repeat
the previously described actions to reorder the remaining fragments correctly.

Figure 4.15: Sorting and first comparisons using greedy PUP. Figure is based on Poisel et al. [37, p.
11]

The maximum number of comparisons needed for the reassembly phase can be calculated as
shown in Equation 4.4. H refers to the number of header fragments and F to the number of non header
fragments. Because header fragments are removed from the reassembly algorithm at completion, this
equation describes the worst case scenario, finding not a single footer fragment, leaving all reassembly
paths unfinished.

Comparisons =
F∑
n=1

H ∗ n (4.4)

Bernhard Schildendorfer, BSc., is101510 48

Information Security

Figure 4.16: Reassembling file fragments using greedy PUP. Figure is based on Poisel et al. [37, p.
11]

As a possible approach to improve the performance of the algorithm, Poisel et al. [37, p. 10]
recommended to cache previous comparison results for future use. This would prevent the calculation
of the same comparisons between fragments multiple times.

Based on Pal and Memon’s [3, p. 67ff] taxonomy, the smartcarving procedure consists of three
steps which differ in computational complexity: preprocessing, collation and reassembly. The pre-
processing and collation phase has a linear complexity O(n) since the data is sequentially analyzed to

Bernhard Schildendorfer, BSc., is101510 49

Information Security

detect file fragments. The sorting algorithm for the reassembly phase also results in linear complexity,
since the fragments are only separated by using a binary decision whether the fragment is a header
fragment or a non-header fragment. As previously already mentioned, the reassembly algorithm has
the biggest effect to the complexity because it needs to compare the fragments with each other, result-
ing in a quadratic complexity O(n2). The overall complexity is dominated by the most complex step,
resulting in a quadratic complexity like shown in Equation 4.5.

Complexity = O(n) +O(n) +O(n2) ∼= O(n2) (4.5)

As usual, the computational complexity approximates the maximum computations assuming a
worst case scenario of the algorithm. Of course, the algorithm can finish much faster than O(n2), if
lot of header fragments exist and little non-header fragments are in place. In this case, the image files
are possible to be reassembled very quick because of the lack of possible combinations. Since the
algorithm removes reassembled fragments, the overall needed comparisons may reduce drastically.
However, for the approximation of the overall complexity, the worst case is assumed, resulting in
quadratic complexity.

Bernhard Schildendorfer, BSc., is101510 50

Information Security

Verification of the effectiveness of the imple-
mented file carver

As the technical details and used carving algorithms were shown, this chapter will analyze the
carving results of a defined test data set. This set is randomly created by a self written generator,
which writes JPEG and non-JPEG files to a disk image in order to ensure high fragmentation within
the test data set. This chapter will first describe the used test data set in detail and analyze the carving
results in the second half. The analysis will give an insight in the effectiveness of the file carver and
the used algorithms.

5.1 Test data set
The test data set consists of both JPEG and non-JPEG files, to test the file carver’s ability to identify
data clusters of JPEG files. Additionally, the disk image and its actual file fragmentation will be
shown, to be able to compare it to the carving results.

5.1.1 JPEG files
The chosen test set contains five different JPEG files with different features, which are detailed de-
scribed in this chapter in order to maintain the reproducibility of this testing case. The JPEG files
were randomly downloaded from public available sources to get media material which is used ”in the
wild”. As you can see in Table 5.1, this results in different JPEG features which are all needed to test
the effectiveness of the JPEG file carver.

Table 5.1 gives a general overview of the JPEG files. The shown pictures are used as reference
images, to which the carved files can be compared to later. This is essential for an objective quality
measurement of the carved results. During this test, only images with a JFIF application segment
were used. File carving of files with EXIF meta-data is very likely to work but application testing
was primary focused on JFIF files. The carver supports arbitrary image resolutions, as well as the
color types ”RGB” and ”Grayscale” since these are very common. Another very important attribute
of JPEG images is the sampling factor, which describes the size of the pixel block used for the discrete

Bernhard Schildendorfer, BSc., is101510 51

Information Security

Picture File name Interchange
Format

Dimension Color type Size (Byte) Sampling
Factor

balls.jpg JFIF 1.01 800x600 RGB 146.534 2x2

nature.jpg JFIF 1.01 1024x1024 RGB 204.587 2x2

python.jpg JFIF 1.01 750x500 Grayscale 74.497 1x1

space.jpg JFIF 1.02 1600x1200 RGB 467.491 1x1

war.jpg JFIF 1.01 800x600 RGB 127.102 2x2

Table 5.1: List of JPEG images used in the test set

Bernhard Schildendorfer, BSc., is101510 52

Information Security

cosine transform. JPEG uses at least pixel blocks of size of 8x8 which corresponds to the sampling
factor 1x1. However, other sampling factors like 2x2 (16x16px), 1x2(8x16px) or 2x1(16x8px) can
occur. The application supports the very common 1x1 and 2x2 sampling factors. All can be decoded
using the sequential mode, meaning that the data of all color channels are iteratively stored, allowing
an sequential decoding of the whole image.

5.1.2 Automatic generation of disk images
The creation of the disk image, containing the test data set, was completely automated to ensure
completely random data storage. Listing 5.1 shows the bash script used for creating the disk image.
The general intent of the script is to generate a NTFS or FAT disk image and write randomly non-
JPEG files to it until it is full. Afterwards, the JPEG images specified in Table 5.1 are copied to the
disk. To ensure fragmentation, files on the disk are deleted until a JPEG image can be copied.

Line 1 to 24 initialize the script and check for command line parameters vfat and ntfs. Af-
terwards (25-39), the disk image is newly generated, or if a template is already existent, copied, and
gets formatted with the file system specified as command line parameter. The correctly formatted
disk image gets mounted to allow file operations (43-60). As a first step, all non-jpeg files are copied
to the disk until the media is full (44). Line 47 randomly iterates through all JPEG images of the test
set and tries to copy them to the disk. If no space is available, a randomly chosen non-JPEG file is
deleted. If there is afterwards enough disk space, the JPEG file gets copied. This ensures file frag-
mentation of the image data, because most non-JPEG files are smaller than the JPEG files, remaining
small chunks of free disk space after deletion, forcing the file system to fragment the images. This
process is repeated until all images are copied to disk. After unmounting the disk, it can be used
by the file carver as a testing image. Of course, in a real environment, the file system information
like the Master File Table (MFT) could be deleted or defect. Although the recovery of a formatted
disk would be perfectly possible, this disk image is not formatted, to have an exact look at the file
storage. Otherwise it wouldn’t be possible to verify the correctness of the carved data, preventing an
interpretation of the test results.

1 #!/bin/bash
2
3 USAGE="Usage: diskGenerator.sh [vfat|ntfs]"
4
5 if [$# -ne 1]; then
6 echo $USAGE
7 exit 1
8 fi
9
10 if ["x$1" != "xvfat"] && ["x$1" != "xntfs"] ; then
11 echo $USAGE
12 exit 1
13 fi
14
15 FS=$1
16 MOUNT="mount"

Bernhard Schildendorfer, BSc., is101510 53

Information Security

17 DISK="disk.img"
18 SIZE="5M"
19
20 #Remove old Image
21 if [-e $DISK]; then
22 rm $DISK
23 fi
24
25 #================= DIST GENERATION ======================
26 echo " - Generating $SIZE $FS Disk"
27 if [! -e template.img]; then
28 dd if=/dev/zero of=template.img bs=1 count=$SIZE
29 fi
30 cp template.img $DISK
31
32 if [$FS == "vfat"]; then
33 mkfs -t $FS $DISK
34 else
35 mkfs -t $FS -c 2048 -s 512 -F $DISK
36 fi
37
38 echo " - Mounting $DISK"
39 sudo mount -t $FS -o loop $DISK $MOUNT
40
41
42 #=================== COPY ===========================
43 echo " - Copying data to $MOUNT"
44 sudo cp data_$FS/* $MOUNT &> /dev/null
45
46 #try to copy all jpegs
47 for jpeg in $(find jpeg/ -maxdepth 1 -mindepth 1 -type f | sort --random-sort)
48 do
49 #delete files until enough space for jpeg
50 echo "[+] try to copy $jpeg to $MOUNT"
51 for delete in $(find $MOUNT -maxdepth 1 -mindepth 1 -type f | grep -v .jpg | sort --random-sort)
52 do
53 echo "[-] need to delete $delete"
54 rm $delete
55 cp $jpeg $MOUNT &> /dev/null
56 if [$? -eq 0]; then
57 break
58 fi
59 done;
60 done;
61
62 echo " - Unmounting $DISK"
63 sudo umount $MOUNT
64
65 exit 0

Listing 5.1: Automatic creation of the disk image

Bernhard Schildendorfer, BSc., is101510 54

Information Security

5.1.3 Description of the used disk image
This chapter describes the generated disk image, which will be used in this chapter to test the imple-
mented file carver. For a verification of the randomly generated data on the disk, the command fls
of ”The Sleuth Kit” is used. It reads the file system information of the disk without mounting it. Table
5.2 shows the content of the disk ”image_ref_jpeg_ntfs_DA.img”. It can be seen that all JPEG files
are stored at the disk. Additionally to the image files, other files of different file types are stored to
the disk in order to enforce file fragmentation and to test the collation algorithm of the carver. A total
of 21 files of different file types are stored on the image, involving both plain text file types (SVG and
Text) and compressed file types (H.264 and JPEG). The tool fls also lists the directory entries of the
files which can be used to access the stored files.

File name File type Size (Byte) Directory Entry
Block_Diagram_Delta-Sigma_1.svg SVG Vector Graphic 86.203 69-128-2

1308163855.svg SVG Vector Graphic 67.224 67-128-2
1308163855_1.svg SVG Vector Graphic 67.224 64-128-2
1308163855_3.svg SVG Vector Graphic 67.224 66-128-2

Block_Diagram_Delta-Sigma_2.svg SVG Vector Graphic 86.203 70-128-2
brou_fema.txt text data 113.182 81-128-2

brou_fema_1.txt text data 113.182 72-128-2
brou_femav_2.txt text data 113.182 73-128-2
brou_fema_3.txt text data 113.182 74-128-2
brou_fema_4.txt text data 113.182 75-128-2
brou_fema_5.txt text data 113.182 76-128-2
brou_fema_6.txt text data 113.182 77-128-2

FVDO_Freeway_qcif.h264 H.264 video 143.826 82-128-2
FVDO_Girl_qcif.h264 H.264 video 134.112 85-128-2

FVDO_Girl_qcif_2.h264 H.264 video 134.112 87-128-2
FVDO_Girl_qcif_3.h264 H.264 video 134.112 88-128-2

python.jpg JPEG Image 74.497 80-128-2
nature.jpg JPEG Image 204.587 91-128-2
balls.jpg JPEG Image 146.534 78-128-2
space.jpg JPEG Image 467.491 84-128-2
war.jpg JPEG Image 127.102 89-128-2

Table 5.2: Detailed list of all files stored on the disk image

To analyze the results of the file carver, it is important to know the exact fragmentation of the
targeted JPEG files. As file system information is still available, the fragment locations of the images

Bernhard Schildendorfer, BSc., is101510 55

Information Security

can be identified with the istat command. The tool reads the MFT of the disk image and shows
all clusters that are assigned to an directory entry. Table 5.3 gives an overview of the JPEG file
fragments which are supposed to be identified by the file carver. Since the most images have at
least three fragments, they can be called heavily fragmented in respect to their small file size. The
image space.jpg has even six fragments. To make things worse, the fragments are partially very close
together. Therefore, this test set can be rather seen as a worst case scenario than a best case scenario,
to truly test the quality of the file carver.

File name Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5 Fragment 6
python.jpg 2417-2453 - - - - -
nature.jpg 2361-2416 2454-2472 297-319 5-6 - -
balls.jpg 1262-1278 2544-2558 320-326 249-281 - -
space.jpg 1196-1261 1084-1139 761-803 561-593 660-674 54-69
war.jpg 149-173 224-248 282-294 - - -

Table 5.3: Cluster numbers of all JPEG fragments

5.2 Analysis of the test results
To verify the effectiveness of the developed JPEG file carver, a qualitative analysis of the carving
results is necessary. For the test, the multimedia file carver was used in the SVN revision 931.
The used data set, as described before, is also available in this revision with the file name ”im-
age_ref_jpeg_ntfs_DA.img”. The default preprocessing and collation parameters were used to evalu-
ate the carver in its default state.

The carving process has two major steps, which mainly influence the carving results: collation
and reassembly. For a detailed analysis, the collation phase will be analyzed first. In the current
carving state, the file fragments can’t be associated to a JPEG file by the file carver. They are seen
by the carver as separated chunks of JPEG data without any contextual information other than the
header state. Since we have detailed knowledge of the disk image (see Table 5.3), the correctness of
the carved fragments can be verified. By comparing the classification results with the correct cluster
numbers in Table 5.4, an overall reliability of 99,34% can be calculated (see appendix A.1), meaning
that more than 99% of all available clusters were correctly classified. Additionally, it is possible to
match the carved fragments to the correct fragments in order to associate files to them. In Table 5.4
this analysis can be seen, showing the carved file fragment and the files they belong to. It can be
seen that fragment 4 and fragment 6 don’t belong only to one file. For example, fragment 4 ranges
from cluster 2417 to 2472, but one fragment of python.jpg is stored at 2417 to 2453, followed by a
fragment of nature.jpg at 2454 to 2472. Since the carver can’t distinguish between the image data

Bernhard Schildendorfer, BSc., is101510 56

Information Security

of two different fragments, it assumes them to be one. It is assumed that this problem can hardly
be solved, because the collation algorithm would need to be able to decode the image data in order
to distinguish the images. This can only be done by providing the correct compression parameters
which are stored in the header that is only available at reassembly time. The same problem occurs
at fragment 6, preventing nature.jpg, war.jpg and balls.jpg to recover completely correct in the next
phase.

Fragment Fragment type Start Cluster End Cluster Associated File
Fragment0 Header 149 173 war.jpg
Fragment1 Header 1196 1261 space.jpg
Fragment2 Header 1262 1278 balls.jpg
Fragment3 Header 2361 2416 nature.jpg
Fragment4 Header 2417 2472 python.jpg, nature,jpg
Fragment5 Non-Header 54 80 space.jpg
Fragment6 Non-Header 224 326 war.jpg, balls.jpg, nature.jpg
Fragment7 Non-Header 561 593 space.jpg
Fragment8 Non-Header 660 674 space.jpg
Fragment9 Non-Header 761 803 space.jpg

Fragment10 Non-Header 1084 1139 space.jpg
Fragment11 Non-Header 2544 2558 balls.jpg

Table 5.4: List of all carved fragments

Because most fragments were carved correctly, it is still possible for the file carver to reassembly
most parts of the JPEG files. However, it can be assumed that nature.jpg, war.jpg and balls.jpg are
partly corrupted due to a hardly preventable worst-case situation. It is assumed that this is an effect
of very high fragmentation on a relatively small disk image. As a result of the reassembly phase, the
carver creates the following reassembly paths:

Fragment 0 (war.jpg): 0, 6

Fragment 1 (space.jpg): 1, 10, 9, 7, 8, 5

Fragment 2 (balls.jpg): 2, 11

Fragment 3 (nature.jpg): 3

Fragment 4 (python.jpg): 4

As a remarkable result, it can be seen that all six fragments of space.jpg are reassembled correctly.
Fragment 0, 2 and 3 are only partially reassembled, because of the errors in the collation phase.

Bernhard Schildendorfer, BSc., is101510 57

Information Security

Fragment 4 doesn’t need any reassembly because the whole file was stored in this header fragment.
Table 5.5 illustrates the carving results by comparing the original image file to the header fragment,
which would be even recovered by ordinary file carvers, and to the recovered file. By comparing the
image data of the header fragment to the recovered image, the benefit of the multimedia file carver
can clearly be seen.

Let’s take a closer look at each recovered image. The first image, balls.jpg, got recovered by a
technique called ”object validation”. Because of an decoding error at the header fragment, it is im-
possible to compare it to other fragments in order to make a reassembly decision. However, it was
seen that images with an decoding error can mostly only be correctly decoded by reassembling it with
its correct following fragment. Therefore, the faulty header fragment was compared to all other frag-
ments, assigning a high candidate weight at successful decoding. Because the header fragment could
also be decoded successfully with an incorrect successor fragment, the assigned candidate weight is
as high to be an ”instant win”. It is still possible for other reassembly paths to win with an better
match.

The next image, nature.jpg had no possibility to get an fragment because they were all incorrectly
assigned to other fragments used in python.jpg or war.jpg. Python.jpg didn’t need any reassembly
because the file was not fragmented. However, the recovered image is much larger than the original
file, because it also contained large chunks of image data of nature.jpg. Due to the End-of-Image
JPEG marker, this image data doesn’t get decoded and is therefore not seen. The fourth image,
space.jpg, is completely correct reassembled. Even though the image has large areas of black, the
comparison algorithm was able to re-order the fragments correctly, pointing out the effectiveness of
the reassembly algorithm. War.jpg could also be reassembled to let someone semantically interpret
the image. The last quarter of the image was also not able to recover because of the merged file
fragments.

Bernhard Schildendorfer, BSc., is101510 58

Information Security

File name Original Image Restored Header
Fragment

Recovered Image

balls.jpg n.A.

nature.jpg

python.jpg

space.jpg

war.jpg

Table 5.5: Comparison between the original JPEG image and the recovered

Bernhard Schildendorfer, BSc., is101510 59

Information Security

Conclusion and outlook

This thesis showed, which algorithms can be used to recover randomly fragmented JPEG files
without file system information. Different carving approaches were shown, of which the smart carving
architecture is most useful for implementing a file type specific file carver in a modular way. It
consists of three highly specialized phases: preprocessing, collation and reassembly. Preprocessing
prepares the target data to allow analysis in the next two steps. Afterwards, in the collation phase, the
data clusters are analyzed for their containing data type. The reassembly phase groups the identified
clusters to fragments and reorders the fragments to retrieve the original files.

For carving fragmented JPEG files, the open-source multimedia file carver [8] was modified.
Therefore, the business logic was needed to be extended by many file type specific algorithms. In
order to create those algorithms, a deep understanding of encoding and internal storage mechanisms of
JPEG files was needed and explained in chapter 3.1. Beside many architectural and GUI based source
code modifications, major changes of the file carver were done in its classification and reassembly
phase.

The file carver needs to be able to identify raw data clusters as JPEG compressed image data.
Different approaches were studied to find the most reliable approach for data classification. Although
algorithms like Support Vector Machines (SVM) or Normalized Compression Distance (NCD) offer a
generic approach (type-all) for file type identification, Roussev [14, p. 12] and Veenman [15, p. 397]
stated that only a file type specific algorithm is able to achieve highly reliable classification results.
Due to the unique features of the JPEG-format marker sequences, it is appropriate to develop a file
type specific collation algorithm, which bases its classification decision on those features. In addition
to positive file type identification, also negative exclusion is implemented by rejecting clusters if char-
acter sequences occur, which are not allowed according to the JPEG standard. The shown algorithms
result in a highly reliable JPEG classifier which meets the requirements for the JPEG file carver.

The reassembly phase of the multimedia file carver needed major changes to support JPEG re-
assembly. Parallel Unique Path (PUP) was used as reassembly algorithm, which offers good balance
between performance and reassembly quality. In order to be able to reassemble JPEG fragments, they
need to be comparable. After discarding the histogram intersection algorithm, pixel matching was
used to perform reliable comparisons of different JPEG file fragments. Although the comparison of
JPEG image parts looks simple at first glance, a lot of effort was invested to prepare the fragments
in a way to make them decodable. This is a difficult task, because file fragments can’t be decoded

Bernhard Schildendorfer, BSc., is101510 60

Information Security

without, at least partial valid, meta information, which is stored in the header fragments. As a result,
it is not possible to compare arbitrary non-header fragment to each other. The only solution of this
problem is to compare complete reassembly paths to a fragment, which was done by adapting the
algorithms in place.

At the end of the thesis, the developed JPEG file carver was tested and its test results were analyzed
to verify the carving reliability. It was shown that the collation algorithm classified 99,34% of the
available clusters correct. The false positive rate is at 0,10% and the false negative rate at 2,93% (see
appendix A.1). The biggest problem in the collation phase is, that it is not possible to distinguish two
JPEG file fragments which have no non JPEG clusters in between. Although this worst case scenario
occurred multiple times, it was possible to completely recover a JPEG image with six file fragments
in the shown test scenario.

To improve the carving results further, different possibilities were pointed out:

According to Poisel et al. [37, p. 10], it is recommended to cache previous comparison results
of file fragments for future use. This would prevent the calculation of the same comparisons
between fragments multiple times and improve the performance.

Since JPEG stores compressed image data, it needs to be decoded prior to use. Huffman com-
pression could be used to reject file fragments in an early comparison phase. The JPEG header
stores a specific Huffman table which can be different for each JPEG file. If two file fragments
are compared to each other, the Huffman table of the first fragment can be applied to the second,
to test for valid Huffman symbols. If the Huffman symbols are not compatible with each other,
the second fragment is very likely no valid successor.

The classifier should not only check for signatures of header fragments, but also for footer
fragments. This would increase the chance of correctly carving file fragments and reduce the
risk of merged file fragments.

Bernhard Schildendorfer, BSc., is101510 61

Information Security

Appendix

A.1 Calculations
The values used in the following calculations are based on the test data set shown in Table 5.3 and the
carving results of Table 5.4.

Correct classified clusters Clusterscorrect = 2541

Available clusters Clustersavailable = 2558

JPEG clusters Clustersjpeg = 512

Non-JPEG clusters Clusters¬jpeg = 2046

False Positives ClustersFP = 2

False Negatives ClustersFN = 15

Classification Reliability CR = Clusterscorrect
Clustersavailable

= 2541
2558 = 99, 34%

False Positive Rate FPR = ClustersFP
Clusters¬jpeg

= 2
2046 = 0, 10%

False Negative Rate FNR = ClustersFN
Clustersjpeg

= 15
512 = 2, 93%

Bernhard Schildendorfer, BSc., is101510 62

Information Security

A.2 JPEG specification

ISO
/IEC

 10918-1 : 1993(E)

SOF Lf P Y X Nf Ci iiH iV Tq

Lf P Y X Nf Ci iiH iV Tq

SOS Ls Ns iCs iTd Tai Ss Se Ah Al

Ld NL

DHP

DNL

EXP Le Eh Ev

(=0)

DQT Lq Pq Tq Q Q10 Q63

VDHT Lh Tc Th L 1 L16 1,1 16,L16V

DAC La Tc Tb Cs

DRI Lr Ri

LcCOM 1Cm Cm Lc-2

Lp 1Ap Ap Lp-2

TISO0990-93/d035

APPn

n

i

Figure B.17 – Flow of marker segment

i=1 to Nf

i=1 to Nf

(Frame header)

(Scan header)

(DHP segment)

(DNL segment)

(EXP segment)

(Tables/miscellaneous)

i=1 to Ns

Multiple (n times)

Multiple (n times)

Multiple (n times)

Quantization table(s)

Huffman coding table(s)

Arithmetic coding table(s)

Restart interval

Comment

Application

Abbreviated format or some tables not in this position

Default condition

Figure à l'italienne B.17 [D
35], = 21 cm

 = 821.%

C
C

ITT R
ec. T.81 (1992 E)

49

Figure A.1: ”Flow of marker segment” [12, p. 49]

Bernhard Schildendorfer, BSc., is101510 63

Information Security

Bibliography

[1] M. Reith, C. Carr, and G. Gunsch, “An examination of digital forensic models,” International
Journal of Digital Evidence, vol. 1, issue 3, 2002.

[2] KPMG, “Data loss barometer,” Internet, Nov. 2010, http://www.datalossbarometer.com/docs/
KPMG_Data_Loss_Barometer_-_Issue_3_-_November_2010.pdf [Accessed: Feb. 14, 2012].

[3] A. Pal and N. Memon, “The evolution of file carving,” IEEE Signal Processing Magazine, vol.
26 issue: 2, pp. 59–71, 2009.

[4] K. M. Mohamad, A. Patel, and M. M. Deris, “Carving jpeg images and thumbnails using image
pattern matching,” in Proc. IEEE Symp. Computers & Informatics (ISCI), 2011, pp. 78–83.

[5] “Sourceforge.net: Foremost 1.5.7,” Oct. 2010, http://foremost.sourceforge.net [Accessed: Feb.
15, 2012].

[6] G. G. R. III and V. Roussev, “Scalpel: A frugal, high performance file carver.” in DFRWS, 2005.

[7] D. Assembly, “Adroit photo forensics 2011,” Feb. 2012, http://digital-assembly.com [Accessed:
Feb. 14, 2012].

[8] R. Poisel and S. Tjoa, “Multimedia file carver,” Nov. 2011, http://www.digitalforensics.at/
wordpress/?page_id=162 [Accessed: Feb. 14, 2012].

[9] S. L. Garfinkel, “Carving contiguous and fragmented files with fast object validation,” Digital
Investigation, vol. 4, pp. 2–12, 2007.

[10] A. Pal, H. T. Sencar, and N. Memon, “Detecting file fragmentation point using sequential hy-
pothesis testing,” Digital Investigation, vol. 5, pp. 2–13, 2008.

[11] O. Avni and T. Knierim, “Carving und semantische analyse in der digitalen forensik,” Sem-
inar: Digital Forensics, 2010, http://www.halvani.de/math/pdf/(Oren_Halvani)-Carving_und_
semantische_Analyse_in_der_digitalen_Forensik.pdf [Accessed: Jun. 29, 2012].

[12] ITU/CCIT, Digital Compression and Coding of Continuous-Tone still Images T.81, CCIT Std.,
Sept. 1992, http://www.w3.org/Graphics/JPEG/itu-t81.pdf [Accessed: Feb. 14, 2012].

Bernhard Schildendorfer, BSc., is101510 64

http://www.datalossbarometer.com/docs/KPMG_Data_Loss_Barometer_-_Issue_3_-_November_2010.pdf
http://www.datalossbarometer.com/docs/KPMG_Data_Loss_Barometer_-_Issue_3_-_November_2010.pdf
http://foremost.sourceforge.net
http://digital-assembly.com
http://www.digitalforensics.at/wordpress/?page_id=162
http://www.digitalforensics.at/wordpress/?page_id=162
http://www.halvani.de/math/pdf/(Oren_Halvani)-Carving_und_semantische_Analyse_in_der_digitalen_Forensik.pdf
http://www.halvani.de/math/pdf/(Oren_Halvani)-Carving_und_semantische_Analyse_in_der_digitalen_Forensik.pdf
http://www.w3.org/Graphics/JPEG/itu-t81.pdf

Information Security

[13] M. Karresand and N. Shahmehri, “File type identification of data fragments by their binary
structure,” in Proc. IEEE Information Assurance Workshop, 2006, pp. 140–147.

[14] V. Roussev and S. L. Garfinkel, “File fragment classification-the case for specialized ap-
proaches,” Systematic Approaches to Digital Forensic Engineering, IEEE International Work-
shop on, pp. 3–14, 2009.

[15] C. J. Veenman, “Statistical disk cluster classification for file carving,” in Proc. Third Int. Symp.
Information Assurance and Security IAS 2007, 2007, pp. 393–398.

[16] S. Axelsson, “Using normalized compression distance for classifying file fragments,” in Proc.
ARES ’10 Int Availability, Reliability, and Security Conf, 2010, pp. 641–646.

[17] M. M. Shannon, “Forensic relative strength scoring: Ascii and entropy scoring,” International
Journal of Digital Evidence, vol. 2(4), 2004.

[18] M. McDaniel and M. H. Heydari, “Content based file type detection algorithms,” in Proc. 36th
Annual Hawaii Int System Sciences Conf, 2003.

[19] G. Conti, S. Bratus, A. Shubina, A. Lichtenberg, R. Ragsdale, R. Perez-Alemany, B. Sangster,
and M. Supan, “A visual study of primitive binary fragment types,” Black Hat USA, 2010, http:
//www.rumint.org/gregconti/publications/taxonomy-bh.pdf [Accessed: Mar. 06, 2012].

[20] W. C. Calhoun and D. Coles, “Predicting the types of file fragments,” in Digital Investigation,
5, Supplement(0): S14 S20. Proceedings of the Eighth Annual DFRWS Conference, 2008.

[21] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines: an application to face
detection,” IEEE Conference on Computer Vision and Pattern Recognition, p. 130, 1997.

[22] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide to support vector classification,”
National Taiwan University, Department of Computer Science, 2003, http://www.csie.ntu.edu.
tw/~cjlin/papers/guide/guide.pdf [Accessed: Jun. 13, 2012].

[23] N. Memon and A. Pal, “Automated reassembly of file fragmented images using greedy algo-
rithms,” Trans. Img. Proc., vol. 15, no. 2, pp. 385–393, Feb. 2006.

[24] A. Pal, “Automated reassembly of file fragmented images using greedy algorithms,” Mas-
ter’s thesis, Polytechnic University, 2005, http://digital-assembly.com/technology/research/
pubs/pal-msthesis.pdf [Accessed: Feb. 14, 2012].

[25] S. Kloet, “Measuring and improving the quality of file carving methods,” Master’s thesis, Eind-
hoven University of Technology Department of Mathematics and Computer Science, 2007,
http://www.forensicswiki.org/w/images/b/b9/Kloet_2007.pdf [Accessed: Jun. 18, 2012].

Bernhard Schildendorfer, BSc., is101510 65

http://www.rumint.org/gregconti/publications/taxonomy-bh.pdf
http://www.rumint.org/gregconti/publications/taxonomy-bh.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://digital-assembly.com/technology/research/pubs/pal-msthesis.pdf
http://digital-assembly.com/technology/research/pubs/pal-msthesis.pdf
http://www.forensicswiki.org/w/images/b/b9/Kloet_2007.pdf

Information Security

[26] N. Mikus, “An analysis of disc carving techniques,” Master’s thesis, Naval Postgraduate School,
2005, http://cisr.nps.edu/downloads/theses/05thesis_mikus.pdf [Accessed: Jun. 26, 2012].

[27] “Data lifter forensic software,” http://www.datalifter.com/products.htm [Accessed: Jun. 26,
2012].

[28] “Encase forensic,” http://www.guidancesoftware.com/encase-forensic.htm [Accessed: Jun. 26,
2012].

[29] “Forensic toolkit (ftk),” http://accessdata.com/products/computer-forensics/ftk [Accessed: Jun.
26, 2012].

[30] “Nfi defraser,” http://defraser.sourceforge.net/ [Accessed: Jun. 26, 2012].

[31] “Photorec,” http://www.cgsecurity.org/wiki/PhotoRec [Accessed: Jun. 26, 2012].

[32] “Recover my files,” http://www.recovermyfiles.com/ [Accessed: Jun. 26, 2012].

[33] B. Carrier, V. Wietse, and C. Eoghan, “Forensic challenge 2006,” http://www.dfrws.org/2006/
challenge [Accessed: Feb. 14, 2012].

[34] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (mime) part two: Media
types,” Internet, Nov. 1996, http://www.ietf.org/rfc/rfc2046.txt [Accessed: Apr. 13, 2012].

[35] E. Hamilton, JPEG File Interchange Format Version 1.02, C-Cube Microsystem Std., Sept.
1992, http://www.jpeg.org/public/jfif.pdf [Accessed: Feb. 14, 2012].

[36] JEIDA, Digital Still Camera Image File Format Standard (EXIF) Version 2.1, Japan Electronic
Industry Development Association (JEIDA) Std., June 1998, http://www.exif.org/Exif2-1.PDF
[Accessed: Feb. 14, 2012].

[37] R. Poisel and S. Tjoa, “Roadmap to approaches for carving of fragmented multimedia files,” in
Proc. Sixth Int Availability, Reliability and Security (ARES) Conf, 2011, pp. 752–757.

[38] ——, “Feasibility study multimedia file carving,” St. Poelten University of Applied Science,
Tech. Rep., 2011.

Bernhard Schildendorfer, BSc., is101510 66

http://cisr.nps.edu/downloads/theses/05thesis_mikus.pdf
http://www.datalifter.com/products.htm
http://www.guidancesoftware.com/encase-forensic.htm
http://accessdata.com/products/computer-forensics/ftk
http://defraser.sourceforge.net/
http://www.cgsecurity.org/wiki/PhotoRec
http://www.recovermyfiles.com/
http://www.dfrws.org/2006/challenge
http://www.dfrws.org/2006/challenge
http://www.ietf.org/rfc/rfc2046.txt
http://www.jpeg.org/public/jfif.pdf
http://www.exif.org/Exif2-1.PDF

Information Security

List of Figures

2.1 Overview of the SmartCarver, showing its three main components: preprocessing,
collating and reassembly [3, p. 67] . 7

2.2 (a) A sub-optimal solution where not all vectors are classified correctly. (b) The width
of the linear discriminator is optimal for this test set.[21, p. 11] 12

2.3 An example for Greedy Parallel Unique Path (Greedy PUP) [23, p. 390] 15
2.4 ”In Bifragment Gap Carving the sectors s1 and e2 are known; the carver must find e1

and s2.” [9, p. 10] . 17
2.5 Overview of the logical storage of files using the FAT file system [3, p. 61] 18
2.6 (1) linearly fragmented file (2) non-linearly fragmented file (3) partial file [25, p. 48ff] 19

3.1 DCT-based encoder simplified diagram [12, p. 15] 22
3.2 Flow of compressed data syntax [12, p. 48] . 25
3.3 ”Structure of Exif file with compressed thumbnail” [36, p. 16] 28

4.1 ”Architecture of the multimedia file carver” [8, p. 26] 30
4.2 Class diagram of the preprocessing phase . 31
4.3 Class diagram of the collation phase . 32
4.4 Diagram of the C shared objects used for fragment classification 34
4.5 Class diagram of the reassembly phase . 35
4.6 Workflow of the file carver, carving a disk image for JPEG files 36
4.7 Flow diagram of JPEG classification . 38
4.8 Summary of fragments [37, p. 9] . 40
4.9 Intense image corruption, caused by a missing small file fragment 42
4.10 Incorrect reassembly . 43
4.11 Correct reassembly . 43
4.12 Determining image fragmentation point . 44
4.13 Selecting the image lines . 44
4.14 Pixel matching algorithm, based on Pal [3, p. 65] which calculates the average differ-

ence between the color values of bordering pixels 46

Bernhard Schildendorfer, BSc., is101510 67

Information Security

4.15 Sorting and first comparisons using greedy PUP. Figure is based on Poisel et al. [37,
p. 11] . 48

4.16 Reassembling file fragments using greedy PUP. Figure is based on Poisel et al. [37,
p. 11] . 49

A.1 ”Flow of marker segment” [12, p. 49] . 63

Bernhard Schildendorfer, BSc., is101510 68

Information Security

List of Tables

2.1 File carving term definition based on Pal et al. [10, p. 4] 5

3.1 ”Marker code assignments” [12, p. 32] . 24
3.2 JFIF attribute list [35, p. 5] . 27

5.1 List of JPEG images used in the test set . 52
5.2 Detailed list of all files stored on the disk image . 55
5.3 Cluster numbers of all JPEG fragments . 56
5.4 List of all carved fragments . 57
5.5 Comparison between the original JPEG image and the recovered 59

Bernhard Schildendorfer, BSc., is101510 69

Information Security

Listings

4.1 fragment_classifier.c . 37
4.2 Source code for JPEG classification . 39
4.3 reassembly_context.py . 45
4.4 Pixel matching algorithm in CJpegHandler . 46
5.1 Automatic creation of the disk image . 53

Bernhard Schildendorfer, BSc., is101510 70

	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Research questions
	1.4 Organization of the thesis

	2 Related work
	2.1 Types of file carving
	2.1.1 File structure based carvers
	2.1.2 Semantic carving
	2.1.3 Carving with validation
	2.1.4 Smart carving

	2.2 Collation algorithms
	2.2.1 Signature based
	2.2.2 Feature based
	2.2.3 Normalized compression distance
	2.2.4 Statistical approaches

	2.3 Reassembly algorithms
	2.3.1 Greedy Sequential Unique Path (Greedy SUP)
	2.3.2 Greedy Non-Unique Path (Greedy NUP)
	2.3.3 Greedy Parallel Unique Path (Greedy PUP)
	2.3.4 Greedy Shortest Path First Unique Path (Greedy SPF UP)
	2.3.5 Enhanced greedy reassembly algorithms
	2.3.6 Sequential Hypothesis-Testing PUP (SHT-PUP)
	2.3.7 Bifragment Gap Carving

	2.4 File fragmentation
	2.5 Related projects

	3 Description of the JPEG standard
	3.1 The compression algorithm
	3.2 Operation modes
	3.3 Structure of the stored data
	3.3.1 JPEG header
	3.3.2 JPEG frame

	3.4 The interchange format
	3.4.1 JPEG File Interchange Format (JFIF)
	3.4.2 Exchangeable Image File Format (Exif)

	4 Proposed JPEG file carver
	4.1 Architecture of the file carver
	4.1.1 General overview
	4.1.2 Architecture
	4.1.3 Workflow

	4.2 Specification of the collation algorithm
	4.3 Specification of the reassembly algorithm
	4.3.1 Grouping
	4.3.2 Weighting
	4.3.3 Reassembly algorithm

	5 Verification of the effectiveness of the implemented file carver
	5.1 Test data set
	5.1.1 JPEG files
	5.1.2 Automatic generation of disk images
	5.1.3 Description of the used disk image

	5.2 Analysis of the test results

	6 Conclusion and outlook
	A Appendix
	A.1 Calculations
	A.2 JPEG specification

	Bibliography
	List of Images
	List of Tables
	List of Listings

