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Preface 
This thesis is dedicated to all prospects in dispatch life support and medical emergency situations. Especially 

for laypersons or people who do not have much experience with medical emergency situations. Though the 

thesis should also help already well educated paramedics to understand more about the reanimation process 

and the immense possibilities to enhance it. The result of this thesis was already tested during two user 

studies which have been performed by Stefan Loitzl and Peter Pavlecka, who both are also partners in this 

project. Therefore, let’s point to their respective thesis and great results, which showed, that a guided 

reanimation can be enhanced with a simple smartphone sensor and a website to monitor sensor readings. 

I would also like to thank my advisors Markus Wagner and Jakob Doppler and especially our head of studies 

Helmut Ritschl for supporting me during the whole process of application and general software development. 

Only by their support it was possible to find project partners and grow a basic idea to a full project.  Especially 

Markus Wagner and Jakob Doppler, who helped me a lot with calculation theories and gave me a new 

prospect on difficult problems. 

Of course also Raphael van Tulder and Heinz Novosad have to be named here and thanked for their 

generous support and their ideas in detecting the chest compression rate and depth in order to monitor it. 

They have told us, what it lacks in current emergency dispatch life support. Raphael van Tulder’s ideas gave 

us the right direction for further development and showed us, what is urgently needed in dispatch life support 

situations. It is an application (small, easy to understand and lightweight), which uses a low cost sensor, to 

monitor the reanimation a layperson is performing, while guided by an emergency dispatcher. The 

emergency dispatcher is then able to give verbal instructions to the reanimating person while getting visual 

information from the ongoing reanimation. 

 

Also to be mentioned are my dear friends Zhongnan and Rainer who helped me with difficult issues and 

gave me new directions and ideas. Generally, they always supported me and helped me to continue my 

work, which gave me a huge motivation. 

 

Finally, I would like to thank my family for supporting me during the whole study and backing me up during 

hard times. They had patience with me and always helped in hard times as well as gave me the possibility 

to study the subject I like. Especially my mother Elisabeth, my grandmother Anna and my sister Teresa, who 

always motivated me and kept me on going and generally support me during my life. I would like to dedicate 

this thesis especially to my family as they are the main reason for my success. Of course I have to mention  

my other friends and family members too, who support me, but those described above are the most 

important. 
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Executive Summary  
Keywords: cardiopulmonary resuscitation, chest compression depth & rate, acceleration-based depth 

estimation, acceleration-based frequency estimation 

 

Essential problem in this regard is, that the current dispatch life support (DLS) by laypersons often lacks the 

appropriate treatment and technique in a guided cardiopulmonary resuscitation (CPR). For example, most 

laypersons who reanimate for the first time in their life, either do it too fast or too slow or generally not in the 

right rhythm. They are normally guided by the dispatcher or call taker on the phone, but he has only limited 

resources in order to review the reanimation process of the layperson. Until now the only way to review the 

ongoing reanimation was verbal feedback from the layperson who is guided by the dispatcher (using a 

metronome for counting). It is difficult for both sides to count only on the verbal feedback, when saving a life 

is involved. 

This leads to a general wish for improvement and great potential. A possible solution is to use current 

smartphone technologies in order to get variables or parameters of the current reanimation. The most 

influential parameter is the chest compression rate (CCR), which is often inappropriate and out of rhythm. 

Also the chest compression depth (CCD) is very important for a reanimation. During this thesis the CCR and 

CCD acquisition with mobile technologies is further investigated along the following major question: 

 

Can low-cost and mobile acceleration sensors in mobile devices (e.g. smartphones) provide high-quality, 

robust and sensitive data for real-time CPR signal processing and data transmission? 

 

Mobile technologies are used nowadays that often, that nearly everyone carries some sort of smartphone 

with them. Particularly in this thesis a device (smartphone) is used in order to collect data and transfer it to 

a server, where it gets visualized and evaluated. The server is not the main part of this thesis, though it is a 

part of the overall project, wherefore it will be described briefly. Especially for the visualization of the collected 

information and feedback the server and the associated website are important. 

Another important part of this thesis is the data transmission and the stability of the application, as the 

application should run at least ten minutes (the time the ambulance statistically needs to arrive at the crash 

scene) [1]. There are numerous challenges, which will be listed below and described shortly: 

 Despite the availability of various high-quality, high-cost specialized devices for chest compression 

depth and frequency determination, low-cost solutions based on widespread mobile devices are 

not considered yet. 

 The stability of the transmission is directly connected to an available internet connection. 

 It is difficult to compute the actual compression depth out of simple accelerometer data as well as 

transmit only the relevant information. 

 The quality, sensitivity, sample frequency and resolution of built-in accelerators vary a lot in modern 

mobile devices.  

 

The aim of this work is to evaluate various algorithms for chest compression rate and chest compression 

depth detection as well as prototype and test them in a smartphone service/application. Another aim is to 

optimize the running application and guarantee a flawless transmission to the server (the main distribution 

place for data points and communication between clients). Therefore, a lightweight transmission system was 

needed, which operates fast and allows easy data transmission. 
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The theoretical background of the thesis is the algorithm implementation as well as the general CPR process 

and the associated time critical events. The two major issues in a time critical situation are the laypersons, 

who are overwhelmed by the situation and the difficulty for the dispatchers to instruct them over the phone 

[2]. Especially if a cardiopulmonary resuscitation is necessary, most people are not able to perform 

telephone-assisted CPR and chest compression at the right frequency, depth and with the required duration 

of up to 30 minutes until emergency aid arrives. Therefore, it is an enhancement for both sides, if the process 

is further guided with a live visualized reanimation process. 

 

For the thesis an experimental research method is used, which basically involves a straightforward 

experiment. The implemented algorithms have been compared to various studies, which have already dealt 

with the optimized compression rate and depth. Also quantitative research approaches were made in order 

to measure numerical data. The main aim is to develop a running application with implemented algorithms 

or self-developed ones with an optimized data transmission for mobile devices. 

 

The results have shown, that it is possible to develop an algorithm for peak detection or frequency detection, 

though it is physically and technically nearly impossible to measure a distance difference of cm’s with only 

an accelerometer sensor (commonly used in every smartphone). 

It is proofed, that it is possible to develop an application, which runs for at least ten minutes stable and 

transfers the data with minimal loss to the server and visualize it on a website with the required information.  

 

Finally, it can be said, that the thesis or project can lead to further interesting investigations on the topic of 

quality enhancement in dispatch life support. Especially in situations, where a cardiopulmonary resuscitation 

is necessary and performed by a layperson. 
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1 Introduction 
The fast population ageing of society leads to an increasing number of out-of-hospital cardiac 

arrest situations. Often dispatch life support and CPR interventions have to be performed by 

physically weak or untrained laypersons and bystanders rather than medical professionals. 

This includes mostly family members and friends [3]. The fear of making bad decisions often 

restrains people from helping and saving life’s or bridge the critical minutes until the 

ambulance arrives [4]. In Austria usually every car licence holder has to complete a first aid 

course during his training, but this course only covers the basic aspects of saving a life, like 

securing the crash scene, calling for help or providing minimal dispatch life support [5]. 

Especially if a cardiopulmonary resuscitation (CPR)1 is necessary, most people hesitate to 

either push on a non-breathing person’s chest as hard as they can or ventilate them. A 

cardiopulmonary resuscitation often requires immediate reaction and even if the chest 

compressions are not totally appropriate, the attempt is crucial to save a person’s life. Over 

the past year’s cardiopulmonary resuscitation has continuously improved and was further 

investigated during various researches (e.g. “Cardiopulmonary resuscitation and the 2500 

universal algorithm: Has the quality of CPR improved?” [7]). Though the process is well 

organized, there is room for further improvement especially during the reanimation process 

performed by a layperson, who is guided by a dispatcher. 

Today’s mobile information- and communication technologies, such as smartphones, are 

equipped with multimodal sensors to measure important context and even vitalparameters, 

that can be used to assess the situation during the reanimation process. For example, nearly 

every smartphone includes numerous low cost sensors, like the accelerometer sensor, the 

main sensor type, that was used during this thesis for estimating chest compression 

parameters. Additionally, every smartphone is able to connect to some sort of network, as well 

as maintain an ongoing phone call and perform background tasks, such as transmitting real-

time data to a remote host. These features of smartphones have been investigated and used 

during this thesis in order to develop a functional prototype, as well as algorithms for chest 

compression rate and depth detection. The described time critical situations require urgent 

acting as well as optimized processes and can be further enhanced by using the already 

existing technology, which everyone carries around – the smartphone. 

 

1.1 Problem 

Time critical medical emergency situations, as the name suggests, are situations, where a 

proper execution of all steps in the chain of survival [8] is crucial and therefore every second 

counts. If the procedure is not optimized or not well performed, the overall outcome has a 

negative effect on the health of the emergency patient. The major issue is, that the layperson 

is often overwhelmed by the situation and the responsibility for another person’s life. 

Especially if a cardiopulmonary resuscitation is necessary, most people are not able to 

perform it appropriately. For example, they often hesitate, to push as hard as they can on 

someone’s chest, as they fear to break their ribs. On the other side of the communication 

channel, while the emergency call occurs, the EMD (emergency medical dispatcher) 

coordinates the ambulance while continuously talking and instructing the calling person. In the 

worst case scenario, the layperson is alone and has to perform the CPR on a non-breathing 

person as well as to communicate with the EMD. Most persons will be overwhelmed with this 

situation and the communication during the process.  

                                                           
1 Cardiopulmonary resuscitation is an emergency procedure performed in an effort to manually preserve 

the brain function and basic body functions until further measures are taken to restore the normal 
circulation and breathing in a person who is in cardiac arrest [6].  
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This leads to errors during the reanimation process like incorrect chest-compression 

frequency or unnecessary arhythmical pauses. Though the EMD tries to keep the contact with 

the reanimating person as well as to motivate them, verbal instruction and communication 

lacks situational information, like the actual chest compression rate (frequency) and chest 

compression depth of the reanimated person. The dispatcher gives supporting instructions 

over the phone during the reanimation and instructs the layperson. The reanimating person is 

asked to count the pushes aloud, while the dispatcher orientates on a visual metronome. If 

the frequency is incorrect the dispatcher can lead the reanimating person in the right direction 

by instructing them to push faster or slower. This process is well established and investigated, 

though needs to be improved. Based on the current demand at improving the CPR, the project 

“LifeStream” from the University of Applied science in St. Pölten was established with various 

project members. One of these partners is Notruf NÖ GmbH the main emergency dispatcher 

in Lower Austria. The second partner is the Medical University of Vienna. The main question 

of research, as well as the subquestions, have been generated in this consortium.  

The problem to be solved is, that the dispatcher is unable to review parameters of the 

reanimation process visually, which would be a great enhancement to emergency medical 

dispatchers. With a visualization the dispatcher would be able to further guide the reanimation 

process with usage of the current reanimation data (this means getting information about the 

current chest compression rate2 and chest compression depth3).   

With this task and cooperation between the project members it was possible to frame the 

central research question for the project as well for this thesis. 

 

1.2 Research Question 

The main question for this thesis is the result of the current demand in dispatch life support 

and time critical medical emergency situations. It is based around the reanimation process 

and the need to collect and transmit data. A requirement was, that the data acquisition is 

performed by the same smartphone, which is used for the emergency call. All data is streamed 

(within this thesis defined as in real-time data transmission) to a server, which processes the 

data and visualizes it on a prototypical client website, that acts as the emergency medical 

dispatcher’s visualization software. 

The main question (Q1) and sub-questions (Q1.1 – Q1.3) of this thesis are: 

 

 Q1: Can low-cost and mobile sensors like the accelerometer in mobile devices (e.g. 

smartphones) provide high-density data for real-time CPR signal processing and 

data transmission? 

 Q1.1: Which real-time algorithms can be used for frequency detection (chest 

compression rate = CCR) and distance detection (chest compression depth = CCD)? 

 Q1.2: Is it possible to make a testimonial evidence about distance detection with the 

accelerometer (low cost sensor)? 

 Q1.3: How can the application be optimized, as well as the data transmission, to 

ensure a fluent transmission and appropriate visualization on the client side 

(website)? 

 

The most specific problems which will be dealt with during this thesis along with the other 

questions, are the algorithms for the chest compression depth and rate detection. 

                                                           
2 The actual rate used during each continuous period of chest compressions within a one minute interval 

independent of pauses [9]. 
3 The actual depth of the compressed chest during a cardiopulmonary resuscitation.  
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1.3 Method 

For this thesis an experimental research method with changing variables is used, which 

involves a straightforward experiment. The variables during this experiment have been the 

changing algorithms or some of the parameters during the several tests on a professional 

reanimation phantom. The control of the checked variables was performed with a megacode 

reanimation phantom, which allows to record the reanimation frequency and chest 

compression depth. Several algorithm approaches were implemented and were examined in 

a personal performance test on a reanimation phantom. Additionally, the implementations are 

compared to various studies, which have already dealt with the optimal chest compression 

rate and chest compression depth, as there are already existing standards for the optimal 

frequency and depth.  

According to the European Resuscitation Council – ERC guidelines [10] the current (updated 

2015) optimal chest compression depth is 54mm and the chest compression frequency is 100 

pushes per minute. The calculation of every tested algorithm is compared to the European 

standards and validated respectively. Each algorithm or application has the same test setting, 

which makes it possible to compare the results, if they are worth to compare. 

 

Also quantitative research approaches are made in order to measure the numerical data, 

which is generated while the application is running. The general aim is to develop or compare 

algorithms and an optimized application as well as a stable transmission via 4G LTE internet 

and the usage of a TCP protocol on mobile Android devices, which collect data during a 

medical emergency situation. The collected data gets analysed and appropriately visualized 

on a client website. The visualization of the data and the calculated chest compression depth 

and rate can also be compared to medical manikins (see  [11], [12]). 

 

1.4 Goals 

The main goal of the thesis is to implement or develop algorithms for CCR and CCD detection, 

compare them to existing standards as well as to optimize the application for a stable and 

continuous data transmission. 

Not only the application itself is important, there are many more things to watch out for. For 

example, the hardware of the accelerometer sensor varies from smartphone to smartphone. 

Therefore, the algorithms need to be adjusted individually for each new smartphone tested. 

This is achieved by a configuration menu or a dynamic correction of the algorithms during the 

running application. 

 

The goals of this thesis can be achieved by further investigation into the right topics (for 

example the research of distance measurement and frequency detection with Android). Also 

the implementation of the algorithms in the pre-created application is necessary, as the basic 

structure of the application is similar each time. 

The most important literature for this thesis are certainly various papers, which deal with the 

optimal compression depth and the right frequency, as well as some books about the 

algorithmic implementation (e.g. Peak detection and filtering of values). Various android- and 

programming forums are also used as book in order to enhance the application. 

 

Furthermore, various projects are interesting, which deal with fast and effective data 

transmission over the network, as well as stabilizing the general application. Another goal is 

to store the data on the phone or export it in order to monitor the reanimation process. The 

data needs to be accessed easily and should be usable for further visualizations or 

calculations. 
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1.5 Structure of the Thesis 

This chapter should give a basic overview of the thesis structure and can be used as guideline. 

For the avoidance of doubt, the chapters are visualized and described briefly (the descriptions 

do not correspond to the actual subchapters). 

 

 
Figure 1: Structure of the thesis. 

  

• Description of the fundamentals and 
theories around CPR

• Mathematical and Progammatical 
fundamentals around the application 
development

• Description of the platform and used 
technology

Chapter 2

• Basic software design and concepts 

• Description of the application and previously 
done work, like the server and website

Chapter 3

• Explanation of the used algorithms as well 
as their implementation in the running 
software system.

• Programmatical implementation of the 
used algorithms.

Chapter 4

• Review of the gathered results.

• Compact visualization of the gathered 
results as well as the corresponding 
algorithms.

Chapter 5

• Further investigation around the problem

• Additional information for further
proceedings and review of the achieved 
results and work.

Chapter 6
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2 Theoretical Background and State of the Art 
This chapter covers most of the theoretical background, used for the application and server 

development as well as the mathematical background for the tested and developed 

algorithms. It is important to give this introduction to the used technology as well as the 

mathematical considerations to be able to further investigate the thesis results. 

More accurate descriptions about the application itself and the website can be found in 

Chapter 3, which covers most of the application and server (website) development. Also 

described here are some of the fundamental thoughts about the general idea as well as the 

implementation possibilities and restrictions. 

 

2.1 Design Considerations on a Mobile Resuscitation Platform 

During the project “LifeStream”, which is a result of the current demand for an improved 

reanimation during a cardiopulmonary resuscitation, an application was developed. The aim 

of the application is to support people in a time critical dispatch life support situation, more 

precisely during a cardiopulmonary resuscitation, which is guided by a dispatcher. 

As nowadays nearly everyone is using a smartphone or carries a smart device around with 

them, the motivation was to develop a mobile application. The idea was that the application 

should be able to support a first responder during a reanimation in order to enhance the 

outcome of the cardiopulmonary resuscitation. The already telephone-instructed reanimation 

can drastically be enhanced for the dispatcher by a possible use of the website platform and 

the corresponding visualization tool. Also the layperson has a great enhancement by using 

the application on the mobile phone. 

 

As a result, it should produce a better outcome for the patient as well as support the layperson 

or even professional first responders during the reanimation. The reanimating person is able 

to conduct the reanimation optimally guided by the dispatcher. The dispatcher is able to direct 

the layperson in the right direction not only by verbal feedback but also by visual feedback 

from the application, which is a huge enhancement. The audio visual feedback offers a new 

layer of insight for the dispatcher, as he is able to directly control the action of the reanimating 

person and is not reliant just on the verbal feedback from the layperson. 

 

2.1.1 Basic Principal of the Mobile Application Client Usage 
This point shall only give a short introduction or concept idea about the application and the 

idea behind it. A specific use case scenario can be found in Chapter 3.  

At best the LifeStream-App is used the following way on condition of a previous installation: 

 

 The layperson or first responder makes an emergency call and the competent 

dispatcher asks him to start the application (the phone call shifts to the background 

and the application overlays the screen). 

 The dispatcher instructs the reanimating person to position the phone face up on the 

patient’s chest and place their hands on the phone. 

 Afterwards they are instructed to press the start button which starts the data 

collection, calculation and transmission to the server: 

o Data is distributed to the client websites and visualized in a moving line 

graph. 

o The data or graph shows the current frequency of the reanimation as well 

as other parameters and allows interpretations about the compression 

depths. 
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2.1.2 Basic Principal of the Visualization Server 
The website will also be further explained in the next chapter, though not that detailed as it is 

not a major part of this thesis. However, it is important for the whole project, as the dispatcher 

can whereby visually validate the reanimation process.  

It is possible to visually gather the following information from the website (it continuously 

updates during the reanimation process): 

 

 During the reanimation the application streams4 the calculated parameters and the 

raw data to a sever, where it gets further redirected and processed. The website 

shows who is currently logged in or active (accomplished by giving a unique 

identification number for each client, separated by phone client and pc client). 

 The website shows the current reanimation curve or more precisely the reanimation 

depth approximation. 

 Also the current frequency of the calculation is updated in a fixed time interval. The 

website shows always the mean frequency during the time interval. For example, it 

shows the mean frequency of the last 15 seconds. After additional 15 seconds the 

next average frequency is shown. 

 

2.2 Theories and Models 

This section covers the physical and technical theories and model concepts which were 

implemented during the project. The algorithms in this thesis are based around the physical 

concept of acceleration and its first and second order integral velocity and distance.  

Although the server and the corresponding website are not a major part of the thesis, their 

basic concept and system has to be described, as they are directly related to the developed 

mobile application and not less important for the overall project. Therefore, a brief introduction 

to the concepts is necessary. The application will be described in detail in Chapter 3. 

 

2.2.1 Physical Models of spatio-temporal parameters 
As this thesis is based on utilizing already built in low cost sensors (in smartphones), it is 

important to understand and describe the relationship of acceleration, velocity and distance 

and how each of this magnitudes can be calculated. The used low cost sensor in the 

LifeStream App is the accelerometer sensor, which measures acceleration in m/s². With this 

sensor the important CPR parameters are calculated or at least estimated. 

 

Of course the smartphone has a bunch of other sensors, which could be used to further refine 

the calculations, but they are deliberately not chosen, as the application should run on older 

smartphones too. Nearly every smartphone contains at least a physical sensor like the 

accelerometer, which is normally used for gesture detection or something else. 

The other sensors could be combined to get a more accurate calculation, but this would 

require a higher operating system level (e.g. a higher version of the Android operating system) 

as well as a newer smartphone. As nearly everyone should be able to use the LifeStream-

App, it was given, that the accelerometer sensor is used, which should be able, to give 

information about the distance travelled with the mobile phone in hand. 

 

                                                           
4 Streaming is the transfer of data at a steady high-speed rate. Data streaming requires for real-time 

human perception of the data, the ability to make sure that enough data is being continuously received 
without any noticeable time lag [13]. 
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For future calculations and models during this thesis it is important to know the 

following words as well as their definition and relation to each other: 

 

 Time 

Definition: This is simply used in order to describe a time duration. More precisely 

the difference between two time stamps represents a time duration. Typically 

measured in seconds. 

 

Relation: Time is directly related to all other quantities, as they are dependent to time 

and use the time duration during the equations [14, p. 24], [15]. 

 

 Distance 

Definition: Distance is the total length which is covered by a moving object 

independent of the direction of motion. Distance itself is a scalar quantity and refers 

to the total length of travel irrespective of the direction of motion. This basically 

means no matter which direction the object is moving, the distance is the path 

between two points. 

 

 
Figure 2: Simple visualization of a travelled distance. Note: not the direction is important, only the way. 

 

Mathematically it can be computed with the following formulas, where the first is for 

continuous acceleration and the other not (in Chapter 4 there is even a distinction 

between vector and scalar calculations): 

 

𝑑 =  𝑣𝑖𝑡 +
1

2
𝑎𝑡2 Eq. (1) 

  

This formula above relates original velocity 𝑣𝑖, time 𝑡 and constant acceleration 𝑎. 

 

𝑑(𝑜𝑟 𝑠) =  ∫𝑣 𝑑𝑡 =  ∬𝑎 𝑑𝑡 𝑑𝑡 Eq. (2) 

 

In this equation distance is the integral of velocity or the second integration of 

acceleration.  

 

Relation: Distance is related to all of the other listed physical quantities. However, 

the relation to displacement is most important, as it can easily be mistaken (see 

displacement for further visualization). Sometimes the distance is the same as the 

magnitude of the displacement, but it is not always the case for groups of segments. 

The distance normally increases continuously, even if a person is walking around a 

desk for example. On the other side the displacement fluctuates a bit and then 

returns to zero, after the person walked around the desk (compared to the starting 

point of the person) [14, p. 24], [15]. 
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 Displacement 

Definition: Displacement is the distance measured in a straight line or linear distance 

and always in a specified direction. This means, that displacement is a vector 

quantity and can be defined as the change in position of an object.  

 

 
Figure 3: Simple visualization of displacement. This time the direction is important, as it is a vector quantity. 

 

Mathematically it can be calculated by the following equation, where the sign of the 

resulting value designates a direction (positive or negative 𝑑). The formula is used 

to define the displacement in the normal three dimensional space: 

 

∆𝑑 = 𝑑2 − 𝑑1 Eq. (3) 

 

 

𝑑2  … refers to the value of the final position 

𝑑1 …  refers to the value of the initial position 

∆𝑑  …  symbol used to represent displacement 

 

Relation: Since the displacement is measured along the shortest path between two 

points, its magnitude is always less than or equal the distance. The shortest path 

between the two points A and B is a straight line, as seen in the following Figure 4. 

 

 
Figure 4: The relation or difference between distance and displacement. 

 

The displacement of a moving object is also directly proportional to both the velocity 

and time (“Move faster – Go faster & Move longer – Go farther”). Sometimes the two 

quantities distance and displacement seem the same or nearly the same with their 

equations. For this thesis though, these above mentioned definitions are used 

(sometimes slightly adapted), as the compression depth can be approximated by the 

change of position or the displacement between two points [14, p. 24], [15]. 
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 Speed 

Definition: Speed can be defined as the rate of change of distance or in other words, 

speed is the distance moved per unit of time. With speed it is possible to make a 

point about how fast and slow an object is moving. Speed involves both, distance 

and time, where “faster” means either “farther” (or a greater distance covered) or 

“sooner” (less time needed). Speed itself is a scalar quantity: 

 

�̅� =  
∆𝑑

∆𝑡
 Eq. (4) 

 

Where the line over the �̅� stands for mean or average and the ∆-Symbols indicates 

a change. In another form, speed can also be written as the first derivate of distance 

with respect to time: 

 

�̅� =  lim
𝑡→0

∆𝑠

∆𝑡
=

𝑑𝑠

𝑑𝑡
 Eq. (5) 

 

Here the distance is represented by the variable 𝑠 as this could be complicated with 

the derivation later. 

 

Relation: In relation to the other quantities, speed corresponds to a slope on a 

distance-time graph. Thus the instantaneous speed of an object with non-constant 

speed can be found from the slope of a line tangent to its curve. Speed is more 

directly related to velocity as distance is to displacement [14, p. 24], [15]. 

 

 Velocity 

Definition: Velocity is nearly the same as speed, though it is a vector quantity and 

defines the rate of change of displacement with time. Velocity therefore contains a 

directional information too. The formula for the velocity is technically the same as the 

one for speed, though it works with vector quantities and therefore has a bold 𝒗 in 

order to distinct it from speed: 

 

�⃗⃗� =  
∆𝑑

∆𝑡
 Eq. (6) 

 

Relation: 

Velocity is also related to the acceleration, though a final velocity can only be 

calculated, if the initial velocity is known and a constant acceleration is given. As the 

accelerometer of the smartphone is not accelerating constantly the equation is not 

useful here. The following Figure 5 shows the relation of velocity and speed 

[14, p. 24], [15]. 

 

 

 

 

 

 

 

 

 

 
Figure 5: Velocity and speed relation. 
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 Acceleration 

Definition: Acceleration describes the rate of change of velocity with time. Generally, 

acceleration happens, when an object speeds up, slows down or changes direction 

(all three happen during the usage of the accelerometer sensor in a smartphone). 

Acceleration itself is a vector quantity, which means it has a direction. Mathematically 

the acceleration can be calculated by the following equation: 

 

𝑎 =  
𝑑𝑣

𝑑𝑡
= 𝑣′ =  

𝑑

𝑑𝑡
(
𝑑𝑠

𝑑𝑡
) = 𝑠′′ Eq. (7) 

 

This means 𝑎 is the first derivate of the velocity and the second derivate of the 

displacement after time. This formula is nevertheless only useful if the velocity is 

constant and instantaneous. The other formula here is used for calculating the 

average acceleration: 

 

𝑎 =  
∆𝑣

∆𝑡
=  

𝑣𝑓 − 𝑣𝑖

∆𝑡
 Eq. (8) 

 

𝑣𝑓  … refers to the final velocity 

𝑣𝑖 …  refers to the initial velocity 

 

Relation: Any change in the velocity of an object results in acceleration, either if the 

speed is increasing, decreasing or the direction is changed. This means acceleration 

is directly related to velocity, or depends on the change of it. Again as acceleration 

is a vector quantity, there are two kinds of acceleration, the average and 

instantaneous.  

The average acceleration is determined over a long time interval. The velocity at the 

start of the interval is called initial velocity or starting velocity and the velocity at the 

end is called final velocity. The average acceleration is then a quantity calculated by 

the difference of both as seen above [14, p. 24], [15]. 

 

 

Physical Insight 

After dealing with various physical models about basic motion detection and recognition based 

on one of the above described quantities, it is possible to further investigate the algorithms, 

which are implemented in the application. The relation of acceleration, displacement and 

velocity is important, as all of these three quantities are vector quantities. A vector quantity is 

a directed magnitude, which gives information about the direction. Using the example of 

displacement, it is theoretical possible to determine the final positon of the mobile phone, if it 

is used for CCD detection. It would be useless to determine the distance, as this is only a 

scalar and counts up the travelled way. 

 

Another point of interest is the way or direct way, the reanimating person has made with the 

phone from the normal chest position of the victim to the compressed chest position of the 

victim. This path can be obtained theoretically by using the displacement, as it covers or 

calculates the direct way from point A to point B. Based on these considerations the further 

investigations of this thesis are constructed or orientated. Even the frequency can be detected 

with this approach, because after a certain push threshold is exceeded, the push is correct 

and this counts to the total frequency. 
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2.2.2 Technical Models for spatio-temporal computation 
This subsection deals with the basic technical considerations and theories which are used in 

the whole project and during this thesis. The chapter is segmented into several sub items 

which deal with the following topics: 

 Accelerometer basics 

 Server and Streaming 

 Website and Visualization 

 

It has to be mentioned, that during this chapter only the basic knowledge is presented and the 

basic concepts, which can easily be adapted to other projects. These concepts are relevant 

for the whole thesis and will be further examined in Chapters 3 and 4. 

 

2.2.2.1 Accelerometer Basics 

The accelerometer is a simple yet powerful low cost sensor and mechanical tool, which is 

implemented into nearly every smartphone, either modern or old. The accelerometer is 

combined with other sensors inside the smartphone or even in other devices and can give a 

lot of information, especially in conjunction with other sensors like the Gyroscope or the 

Magnetometer. 

Though the raw sensor or basic accelerometer is a mechanical device for acceleration 

measurements (often used to detect shakes of the phone or tilts for example). It offers the 

possibility to measure the acceleration in a specified direction. The values measured by the 

smartphone are in m/s² and always include the acceleration and deacceleration. In fact, this 

behaviour is a bit complicated or not easy to understand, as normally it would be logical, that 

if a car is accelerating, for example, it will not deaccelerate the same way or even further.  

In order to understand the concept of the accelerometer the following Figure 6 can be used 

as help (imagine a ball inside a box). 

 
Figure 6: Accelerometer explained, with a ball inside a box [16]. 

 

If the box is seen as a vacuum space, where no gravitation affects the ball, the ball would rest 

in the middle like in Figure 6. Each axis has some kind of wall, as the point of view is from 

above, the Y+ Wall is removed and needs to be imagined. Each wall represents a movement 

and is pressure sensitive (imagine a phone flat on the table and a person sitting in front of it, 

doing the following movements): 

 X+ and X- represent a horizontal movement (e.g. right and left with the phone). 

 Y+ and Y- represent a vertical movement (e.g. down and up with the phone). 

 Z+ and Z- represent a depth movement (e.g. toward the persons’ viewpoint and 

fromward). 
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Now if the box suddenly gets moved to the left (see Figure 7 below), the ball inside 

the box will hit the X- Wall and it is possible to measure the pressure force, which the ball 

applies to the wall and therefore outputs a value for the X axis. 

 

 
Figure 7: Moving the ball inside the box [16]. 

 

An accelerometer measures indirectly through a force that is applied to one of its walls. This 

force can be caused by the acceleration, but has not to be always. 

 

Because if the box is placed on the earth, which it actually is inside a smartphone, the earth 

gravitation (𝑔 = 9.81 𝑚/𝑠²) influences the whole system. The ball will fall down to the Z- Wall 

and will apply a force of 1g on the bottom of the wall. This force is also included in every 

accelerometer data reading from a smartphone and has to be filtered out, by either various 

filters or by using another sensor type – the linear accelerometer (see Chapter 3). 

 
Figure 8: Ball in resting position with gravity [16]. 

 

In essence accelerometer measures force that is applied not acceleration. Acceleration just 

causes an inertial force that is captured by the force detection mechanism of the 

accelerometer. So far this model analyses the output for a single axis, but the accelerometers 

in smartphones are triaxial accelerometers and can detect forces applied to all three axes of 

the accelerometer. If the box would be rotated to the right for example, the ball inside the box 

would now touch the X- and Z- Wall and produce a value for these both axes. 
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The previous model has a fixed gravitation force and rotates the imaginary box, while 

the force vector remains constant. Though this is useful to understand how the accelerometer 

works with the outside forces, it is more practical to perform the calculations in a fixed 

coordinate system, where the force vector rotates around (shown in Figure 8). 

 

 
Figure 9: Coordinate system and force vector [16]. 

 

The vector �⃗�  is the force the accelerometer measures and 𝑅𝑥, 𝑅𝑦, 𝑅𝑧 are projections of the 

vector on the X, Y and Z axes. The magnitude 𝑀 of the �⃗�  vector can be calculated with the 

following relation (Pythagorean theorem in 3D [17]):  

  

𝑀 = √𝑅𝑥
2 + 𝑅𝑦

2 + 𝑅𝑧
2  Eq. (9) 

 

Now if the acceleration needs to be found moment by moment (as it is done in smartphones), 

another equation takes into account, developed by Isaac Newton (law of motion). He defined 

acceleration in another way, by relating it to mass and force. If a certain force is applied to a 

mass, e.g. a kick on a football, the mass will accelerate. 

Newton’s second law of motion relates the three quantities force, mass and acceleration in 

the following equation: 

 

𝐹 = 𝑚 • 𝑎   𝑂𝑅    𝑎 =
𝐹

𝑚
 Eq. (10) 

 

In other words, this means acceleration is the amount of force needed to move each unit of 

mass. This equation is the theory behind accelerometers, as they measure acceleration not 

by calculating how the speed changes over time, but by measuring the force. 

 

Of course there are various other types of accelerometers and other implementations, which 

also take into account for the developed application. The type of smartphone even makes a 

huge difference in accelerometer readings and calculations. Accelerometers are still physical 

sensors or mechanical sensors and can produce slightly different results which vary from type 

to type and smartphone to smartphone. 

To put it another way, it is important to get more information about the phone and concentrate 

on the accelerometer sensor and the sampling rate as well as the usage of the either 

mechanical sensor or the technical one (which is a combination of various physical sensors) 

[16], [18]. 
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2.3 Server, Streaming & Website 

In this thesis only a small introduction to the basic server and website is given, as they are not 

directly essential for this thesis, though relevant for the whole system LifeStream and the 

LifeStream-App. Of course there are numerous possible implementations for servers and 

different ways to program them. For the project the NodeJs architecture has been chosen, 

which offers a slim and portable system with an easy installation. The research which lead to 

the decision for NodeJs are explained in the following Table 1. 

 
Table 1: Challenges and solutions for server. 

Challenges Solution 

Some servers have latency – this 

means they are not really fast at 

processing huge amounts of data 

simultaneously and in real-time. This is 

important as the reanimation curve or data 

needs to be shown at the right moment. As 

real-time data transmission over mobile 

networks demands low-latency 

transmission. 

The only real solution to this 

problem, beside caching, scripting 

and configuration optimization, is to ensure 

that the server has sufficient CPU and 

memory. The server is provided by the 

university of applied sciences in St. Pölten 

(Austria) and offers a fair amount of space 

and RAM already, which provided a good 

base for the project setup and 

implementation. 

Servers normally need HTTP 

requests in order to send data – this 

means that they are in an idle state 

and waiting for some client to ask them for 

information or sending them a website. 

For the project the clients (websites) would 

have to fetch continuously for new data 

points in order to visualize them in real time. 

This would be very time-consuming and 

also inefficient for this specific issue. 

The solution is fairly simple 

though complex to understand. In 

order to ensure a bidirectional 

communication (server  client & client  

server), Websockets are used. 

For this project the NodeJS architecture is 

used as already mentioned. 

Two way streams are not a general 

implementation of servers. They need 

to be implemented additonally or 

afterwards by using various technology. 

Websockets are able to stream 

and can be easily implemented. 

The connected clients need to be 

seperated, as commonly more 

websites will connect to the server 

(this would be a minor problem) and more 

LifeStream smartphone applications.  

If more smartphone applciations are 

connected, there must be a distinction 

between them in order to serperate the 

various reanimation curves (produced by 

each application). 

As this thesis and project is mainly 

a proof of concept or enhanced 

prototype, only the basic structure for a 

multiclient handling was implemented, by 

giving unique identification numbers IDs to 

each client. 

Destinction between: 

 Android client 

 Website client 

 

 

As stated above in the table, there are several issues in association with developing servers 

and streaming data, especially if it happens all in real-time. It has to be mentioned that there 

are various other problems which deserve a solution, but the mentioned ones are the most 

influent for this thesis and project. 
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According to the researches, sundry technologies and solution approaches have been 

tried out and reviewed. In the following a few of the most interesting ones and the conclusion 

to each approach are listed and explained. The last one is explained a bit more in detail as it 

is used for the LifeStream server. 

 

2.3.1.1 Web service approach 

A possible solution for the server would have been, to cede the streaming and data processing 

to an external website, as the processing, streaming, saving and redirecting of data is a 

complicated procedure. There are numerous streaming services available, which offer a great 

layout and platform, but often need registration or are even paid services.  

For example: 

 plot.ly (https://plot.ly/) 

Allows to transmit the data from a smartphone directly to the plot.ly server where it 

gets plotted in real-time. 

 PubNuB (https://www.pubnub.com/) 

This service is specialized in simplifying the general process of data streaming and 

packaging. Nevertheless, the whole API has to be involved and additional 

functionality needs payment.  

 

Conclusion: 

Existing web services are conceivably improper for this project and thesis, as they are not 

only in charge but also not easy to implement in the existing application. They do not allow 

personal preferences and changes in the existing API. 

 

2.3.1.2 Sockets 

For another approach sockets have been further investigated and worked with, which allow a 

bidirectional connection. This means the client is able to send messages or notifications to the 

server and vice versa. Part of the first trials has been the development of a simple Java Server, 

which displays the received data (from the smartphone application) on a console. 

This worked great as long as the device and client have been in the same network or 

connection. In order to grant full accessibility Websockets are important, as they allow the 

bidirectional communication over the web. 

 

Conclusion: 

As sockets are easy to implement and allow fast data transmission, they are qualified for 

simple bidirectional communication between a client and server. Nevertheless, as the 

application and website should be reachable from all around the world, Websockets are the 

technology of choice. 

 

2.3.1.3 Websockets 

After a few inappropriate attempts or technologies, the final decision was to use Websockets. 

Former real-time communication was achieved by using technologies like Ajax or Comet (both 

web application systems) and the Http-Request-Response system. 

Websockets are technologies, which allow a full duplex communication over a single TCP 

connection. This means, it is possible to implement real-time systems much easier, as client 

and server are able to communicate with each other (over the web). Furthermore, the latency 

can be reduced by using Websockets and the transmitted data in the HTML header is also 

reduced. 

 

https://plot.ly/
https://www.pubnub.com/
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During project development it turned out, that NodeJS is suitable for a fast and easy 

solution, as it even supports multiclient handling, which is important for the future usage and 

dealing with multiple smartphones, that transmit data to the server. 

 

NodeJS is an event based JavaScript runtime environment, based on google chrome. Normal 

program code is processed sequentially. Node is single threaded and uses a concurrency 

model based on normal event loop. Node is a non-blocking architecture, which does not make 

the program wait, but instead registers a callback and lets the program continue. As a result, 

it is possible to handle concurrent operations without multiple threads of execution (scaling 

the program is much easier). A callback function is called or executed at the completion of a 

given task. This allows to jump basically from function to function without waiting for blocking 

functions like for example the file input and output. This results in the high scalability of 

NodeJs, as it can process high numbers of requests without waiting for any function to return 

its results. 

The main advantages are, that Node allows to perform other tasks, while waiting to be notified 

when the response is available and that the Node application is not buffering data into memory 

(instead it is outputting it chunk-by-chunk) [19]. That is the reason, why this architecture is 

used for the thesis as well as the project, as it allows a simple but powerful and fast 

implementation and is intended to work in real-time. 

  

2.4 State of the Art in CCD and CCR detection 

The following examples should only give a brief introduction into current CCR and CCD 

detection devices. There are numerous other approaches of detecting the distance moved 

with the smartphone, but none of them so far is directly related to this thesis concept (using 

the smartphone in dispatch life support and visualize the results at the emergency 

communication and coordination centre for the dispatcher). 

The examples listed in the following Table 2 are only a small part of the available technologies 

and researches. They are the most interesting ones, as they are somehow related near to the 

project behind this thesis. The thesis itself though deals with comparison of algorithms and 

the trial and error of various implementations. 

 
Table 2: Related work and state of the art. 

Name & short description Image 

PocketCPR: This device is produced by an international 

company which also is situated on the German market, called 

“Zoll”. Under www.zoll.com it is possible to see their products as 

well as their fields of research and interest. They have created 

a mechanical device, which enhances the quality of CPR. It is 

called “PocketCPR” and gives simple audio-visual feedback in 

real time. The device shall also help to reduce the stress of the 

situation, as it gives simple commands and tries to calm down 

the user [20].  

 

Figure 10: PocketCPR 

by Zoll [17]. 
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PocketCPR for Droid: The next product is also from the same 

company and is directly an application which gives real-time 

feedback of an ongoing CPR through the smartphone. It utilizes 

the accelerometer sensor of the smartphone to measure the 

compression depth and compression rate and gives the user 

audio-visual feedback. The application also introduces the user 

to the whole process of CPR if he is not familiar with it through 

the first aid course. The application is currently only available for 

testing and learning purposes [20].   

Development of Android Based Chest Compression: One of 

the most interesting studies, which was performed in 2014, 

involves also the usage of inbuilt accelerometer sensors in 

smartphones. The aim is to improve the quality of the CPR by 

directly measuring the CCR and CCD. According to the article 

they have been able to gain meaningful information with the 

accelerometer sensor, though not providing insight in the full 

algorithm and used sensor technology. The main difference is, 

that the feedback is directly on the smartphone and not on a 

website visualized or directly at the dispatcher [21]. 

 
Figure 12: Monitoring screen 

App [21]. 

 

 

CPREzy CPR Assistance Device: This device is mainly 

designed for CPR assistance and offers a simple interaction. 

The device does not give voice prompts for the reanimating 

person and gives live feedback during an ongoing reanimation. 

It has an audible chirp and visual light pacing system with a 

metronome component. The metronome gives a chirp tone at 

100 compressions per minute in order to match the CPR 

guidelines. According to a study from 2005 (“CPREzy: an 

evaluation during simulated cardiac arrest on a hospital bed”) 

the device was compared with a normal reanimation and the 

results have showed, that there was no significant difference in 

compression rate or duty cycles between the techniques. 

Though the CPREzy device was associated with significant 

changes or enhancements in chest compressions [22]. 

 
Figure 13: CPREzy device 

and included stuff [23]. 

 

 

 

Conclusion: 

According to the primary research it is clear, that there are various other projects which 

generally deal with the same subject or field of research. Most of them not directly, as they 

are either more concentrated on the direct user feedback or on the dispatch life parameter 

detection. The main idea though of every related other project and this thesis is to enhance 

the overall quality of the CPR and give the layperson feedback. 

The mentioned applications provide the feedback directly to the laypersons, whereas the 

project behind this thesis intends to stream the information to the emergency call centre. There 

the dispatcher can judge the current reanimation on a corresponding website and give 

feedback to the reanimating person. 

 

 

Figure 11: PocketCPR 
for Droid by Zoll [17]. 
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3 LifeStream Design & Implementation 
In this chapter the main design of the whole LifeStream project as well as the basic usage 

scenario is defined in order to give a brief overview of the whole project structure. Especially 

the mobile client application is explained in more detail, as it is the base for the whole algorithm 

implementation in Chapter 4 and evaluation in Chapter 5.  

To realize a project, not only the project members and the main idea are important, but also 

the schedule of the used technology as well as the definition of a use case scenario. The 

following sub items show the important parts of the project and thesis as well as their design 

process and basic idea behind each part. Once again, the project consists of the following 

main parts: 

 The LifeStream Mobile Client 

 a LifeStream Emergency Medical Dispatch Visualization Server to handle clients  

 and a LifeStream visualization website for the reanimation data 

 

Mentioned must be, that the server and website are not fully described here but nevertheless 

important. Although the implementation of the server and the website programming is 

somehow related to the application and was also a huge part during the algorithmic testing. 

 

3.1 Usage scenario for LifeStream 

A usage scenario refers to examples of the actors in contrast to use cases, which refer to 

generic actors (e.g. a customer). Scenarios are easier to understand as they are more 

personally, which increases their understand ability. They also describe a single path of logic, 

whereas use cases typically describe several paths (basic and alternate paths) [24]. 

The following two short scenarios are fictional and do not refer to a real person or real event 

happened.  

The scenarios are only inspired by the book “60 Fälle Rettungsdienst” [25]. It is intended to 

show both sides (the dispatcher and the reanimating person), during a sudden cardiac arrest. 

Both scenarios are related to each other and are described from a different point of view or 

angle in order to give an impression about the application usage and possible outcome. 

 

 

Scenario Cardiac Arrest with the perspective of EMD:  

The emergency call arrives at 8:43 AM at Michael Maier’s workstation. The emergency cue is 

“unconscious person” and the place of accident a property market. An employee (Thomas) of 

the market set the emergency call, as he found an elder man lying on the customer toilet not 

addressable. The man was asking for a toilet and after 20 minutes of disappearing the staff 

sent an employee to look after him. 

According to the previous information, the time without any treatment is estimated to 4-6 

minutes. The dispatcher Michael instructs the employee with the basic treatment (positioning, 

check for breath, etc.). The employee interrupts Michael and mentions that he has a medical 

application called “LifeStream” installed on his smartphone. Michael immediately instructs him 

to position the smartphone appropriate and start the application. With the usage of the 

application Michael is able to further instruct the employee and correct him during the 

reanimation process. Due to the application usage and immediate reaction the old man was 

stabilized until the arrival of the emergency medical service (EMS) who saved his life. 

 

 

 



St. Pölten University of Applied Sciences 
 
 
 
 
 

25 
 

Scenario Cardiac Arrest with the perspective of layperson:  property market 

Thomas Bauer started his work at 8:00 in the property market and is currently working at a 

shelf with screwdrivers. He is 27 years old and a big fan of new smartphone apps and always 

trying out new ones. Thomas recently installed a new application called “LifeStream”, which 

is intended to be used during a sudden cardiac arrest situation. He thought it would not be 

harmful to have such an application, though it is very unlikely to get in a situation where it is 

needed. Suddenly the area director is calling him via the speakers and tells him to return to 

the information point in order to get a new task. When Thomas arrived at the information point 

and was starting to talk to his area director an elder man interrupted them, asking for the toilet. 

He seemed a bit disoriented and was sweating, but they pointed him the way to the toilet.  

After a while, during their conversation, the area director advised Thomas to look for the elder 

man, as he was not returning from the toilet. 

Thomas was looking in the customer toilet and found the elder man lying motionless on the 

floor. He immediately called the emergency number and they instructed him further. During 

the conversation he remembered that he had installed the new application and directly told it 

to the dispatcher. The EMD instructed him to lay his smartphone on the middle of the chest 

and start the application. Thomas was than further guided by the dispatcher and pushed with 

the smartphone between his hands and the chest of the non-breathing man. After 8 minutes 

the emergency medical service arrived and was able to take care of the elder man. 

 

Both scenarios above can only give a small introduction to the possible usage of the 

application and the system. The dispatcher for example is able to view the reanimation curve 

as well as the frequency directly on the website and can then correct the reanimating person 

directly instead of just relying on audio feedback or a questioning scheme. 

In the following Figure 14 a basic workflow or usage is visualized which covers the whole 

process and possibilities of the project. 

Figure 14: Reanimation process visualization. 
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As seen in the Figure 14 above, the reanimation is intended to be done with the 

smartphone laying on the chest of the victim. The reanimating person must perform the 

reanimation with the smartphone between the hands and the chest, as shown in Figure 15. 

 

During tests and the planning phase of the project as well as this thesis, most people were 

concerned about the phone. The biggest hesitation for them was to push as hard as they can 

on their phone or generally a smartphone, as it could easily crack. 

Against most people’s concerns the smartphones do not crack that easily, especially if they 

are placed horizontally as shown in the above Figure 15 and the pressure on it is not too 

punctual. They can even support the reanimation as they offer a wider contact face, which 

also helps increasing the overall force applied to the victim’s chest. 

Based on these user scenarios and some interviews the further application design is 

influenced, as it should be able to use the application during a medical emergency situation, 

where a complicated system would be obstructive. 

 

3.2 Architecture of the Mobile First Responder Client 

During the application development a lot of researches are necessary which lead to various 

results and approaches. In this subitem the application development is described further as 

well as the application itself and its main functionality and parts. The following described 

application and design considerations are equally with only small variations for the algorithm 

implementation. With the scaffold it is possible to further expand or vary the application as 

well as it is functionality. 

 

3.2.1 Hardware Considerations 
The whole project is programmed and realized with different technologies and platforms. They 

all work together in order to produce the prototype. For the application Android Studio was 

used as development environment. Android Studio is the official IDE for Android app 

development. The applications are programmed in Java, with some additional functionality of 

the development environment. 

As external library only the following Socket.io client implementation for Android was used 

(https://github.com/Gottox/socket.io-java-client), which is easy to use and incorporate into an 

existing android application. A simple and small part of code allows to transmit and receive 

messages with the Socket.io technology. This technology enables a real-time bidirectional 

event-based communication.  

Figure 15: Reanimation with phone and LifeStream-App. 

https://github.com/Gottox/socket.io-java-client
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All applications have been tested with the following real devices (smartphones), which 

all include an accelerometer sensor and were using at least Android 4.4 (KitKat).  

 Samsung Galaxy S4 i9505 

 Nexus 5 

 Nexus 5x 

 

The android application itself requires at least API5 level 19 which is KitKat, but is targeted in 

the final version for API level 23 or Marshmallow. The reason for such a high target API is, 

that some of the great new functionalities of this API are used. For example, the powerful 

Toolbar or conversion of the ActionBar into a toolbar. With a toolbar it is possible to create a 

simple but effective overlay menu. 

 

3.2.2 Usability Considerations 
In order to design the application interface appropriate, it was important to define the usage 

scenario and the basic requirements to the application. Based on the usage scenario, various 

interviews with experts and continuous testing during the development, the following 

requirements to the application are defined: 

 

1. Simple usability 

Essentially this means, that the application is easy to understand and does not 

overcharge the user with a huge amount of functionality and menus. The purpose is 

simply to start the data gathering, transmit it and stop the data gathering. Maybe 

save the data locally on the phone, for eventual analytics. No fancy colours or 

designs are used which could distract the user (whereas they would anyway be 

unnecessary as the user is covering the phone with his hands). 

 

2. Restricted functionality 

As the layperson is often frantic during a time critical situation, especially if he or she 

has to reanimate another person, the application must be protected against 

unwanted termination. This means the buttons (as far as possible without overriding 

the android operating system), which are normally used to terminate the application 

or go back, are overridden with other functions. These functions prevent the 

application from accidental close, as the user or reanimating person is touching 

nearly the whole screen.  

The application is also running in full screen mode, again as far as possible without 

changing the android operating system, which disables the notification bar. In order 

to fully control the application or phone and even the home button, it would be 

necessary to directly release a specific android operating system, which allows the 

change of the home button (this button cannot be accessed by normal application 

development environments). As this would be another huge task, it is not part of the 

overall project, nor this thesis. Nevertheless, it is worth to mention and possible.  

Another important feature of the application is to stay in wakeup state the whole time. 

Normally an application would close or change to battery safe mode after a pre-

defined amount of time (e.g. 1 minute), if no direct interaction is with the devices 

screen. This had to be disabled as the phone should run at least ten minutes6. 

 

                                                           
5 API = application program interface; This is a set of routines, protocols or tools in order to build software 
applications. It specifies how software components should interact [26]. 
6 Ten minutes = average time until the ambulance arrives at the crash scene [1]. 
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3. Easy configuration 

Not only the simple and slim design is important for the application, but also the 

configuration possibilities, especially for the algorithms. In order to adjust various 

parameters for the calculation a simple and non-intrusive menu is used. The menu 

allows to change different parameters of the calculation as well as the general 

application. Each menu will be described separately in combination with the used 

algorithm during Chapter 4. 

For the final application, the menu is not directly necessary, although it allows to 

adjust the calculation to special circumstances (e.g. older smartphones with slower 

runtimes, etc.). 

 

4. Fast transmission and small data format 

This is another important part of the whole app, as the functionality of the application 

relies on a connection to the internet. Without this connection no data transmission 

is possible, thus no calculation or visualization. As the connection is often not stable 

or perfect, the transmission and sent data must be optimized (see point 3.4). 

 

With these important requirements to the application a first mock-up was designed and later 

implemented. During the design process it was often necessary to adjust various parts of the 

application in order to further improve the final result. 

 

3.3 Implementation of the Mobile First Responder Client 

In order to develop an application a design process is necessary. During this design process 

the application is always adjusted. Each part of this adjustment is described briefly in the 

following sub items as well as the concept or functionality. The following sub items are 

intended to be a roadmap to the final result. They give an impression about the first ideas and 

the considerations, which lead to the final prototype result. 

 

3.3.1 User Interface Concept and Design 
 

At the beginning there was just a simple hand drawn 

mock-up, which was used as guideline for the 

application development. 

In this sketch, the application consists of the following 

parts: 

 Start Button: This button allows to start the data 

gathering and begins the data transmission. 

 Stop Button: With this button the streaming and 

 data gathering can be stopped. 

 Save Button: After the application is stopped, 

 it is possible to save a .csv file and an image with 

 the collected data on the phone. 

 Graph view: Here the accelerometer readings 

 are visualized after the reanimation finishes. 

 

It is intended to visualize the data only after the 

collection. The screen should be free for the 

reanimating person in order to place the hands there 

and to push. Figure 16: App Mock-up. 
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The above shown rough concept of Figure 16 was further refined and improved during 

the development process. Nevertheless, the main purpose of the application is always to 

support the users as good as possible and not interfere them. 

With the chosen design it is possible to understand the application easily and fast, as there 

are not more than 3 buttons. Essentially the design is concentrated on easy handling and 

rapid reaction, since a time critical situation needs no fancy or special design. In this case 

functionality comes for design, as the reanimating person needs nearly the whole surface of 

the phone for the reanimation process. 

Another important feature which is included in the application design is the locking of the 

screen, once the Start button was pressed, in order to prevent the user from accidental 

restarting the application. The Start button starts the data gathering with the accelerometer 

and the transmission of the data packages (also the calculation in later implementations). With 

the Stop button, the transmission and the data acquisition can be stopped. In order to prevent 

an accidental hit of the button, it is locked too and can only be unlocked under certain 

circumstances. 

 

3.3.2 Low-level Prototype 
The first implementation of the application included only one activity, the main activity, which 

had 3 Buttons. Before the further functionality is explained as well as the 3 buttons and the 

application interface, a short introduction to the Android activities, views and background 

services is given, because activities are the chalkboard of application development, where 

functionality is placed. Views are used to present information or further stuff and background 

services are important to transmit information, wait for it or do other stuff, which the user does 

not has to see. 

 

Activities in Android: 

Activities are application components that provide views with which a user can interact with, 

such as pressing a button or entering a name for example. Each activity has a window, that 

typically fills the whole screen of the smartphone or smart device, where the interface is drawn. 

The window can also be smaller and flow on top of other windows as well as link between 

them. This means an application usually has a main activity and some other activities, where 

data can be passed around. The main activity is present, when the user is launching the app 

and can lead to further activities [27]. 

 

Views in Android: 

Generally, the android user Interface consists of views. A view is a representation of a widget 

that appears on the visible screen, in order for the user to interact with it. There are various 

types of views for example basic views (TextView, EditText, e.g.), list views (long lists of items 

are displayed inside most of the time) or menus (display additional items) [27]. 

 

Services in Android: 

A service is a component that runs in the background of the application and has no direct 

interaction with the user (this means it is also not bound to the life cycle of an activity). Services 

are used for repetitive and long running operations, such as downloading a file or streaming. 

By default, the services run in the same process as the main thread of the application. 

Therefore, it is common to use asynchronous processing to perform resource intensive tasks 

in the background (e.g. saving data to a .csv file). Most of the time the services run in their 

own threads, which are terminated if the service is no longer needed or stopped [28]. 
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Now carrying on with the explanation of the first programmed app. The first application 

does not include all the above mentioned technologies, as it only has one main thread, that is 

running as well as one activity. In this activity all three buttons are placed as well as an initially 

invisible view, where the accelerometer graph is plotted. These are the placed buttons as well 

as their functionality and relation: 

 Start Button: Upon launching the application this button is visible and the others are 

greyed out and inactive. With a press on this button, the accelerometer sensor starts 

to read the data and transmits it to the server (also the eventual algorithm is executed 

and calculations are performed). 

 Stop Button: Once the application is launched with the Start button, this button is 

enabled and can be pressed in order to stop the data acquisition as well as the 

transmission. The other two buttons are greyed out in the meantime. After the 

application was stopped, the data is plotted on the device screen within a scalable 

view. 

 Save Button: This special button is greyed out from the beginning until the Stop 

button is pressed, as data can only be saved, once it is acquired. After pressing this 

button, the collected raw data is saved into a file and an image of the plotted 

reanimation curve is stored on the local phone storage as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Annotations: 

As the above described design implementation is one of the first ones, it was not really 

optimized yet. There is no full screen enabled for the application, nor are the buttons 

overridden in order to block their accidental usage. The plotted data consist only of raw 

accelerometer readings and is processed with a low pass filter (further insight at Chapter 4).  

By clicking the Save button, in this version, a .txt file is created and a .jpg file, which are stored 

locally on the phones storage. 

Figure 17: First implementation of the draft. 
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3.3.3 High-level Prototype 
Of course there have been several other versions of the design during the application 

development process, but they will not be mentioned here in full detail. Although there is one 

interesting design idea, which was also implemented and involves gesture control. The idea 

was basically, that the user has to make a certain gesture, in this particular case, drawing a 

circle, in order to unlock the device screen. The intention of this gesture controlled application 

is, that the user cannot accidently hit the Stop button during an ongoing reanimation, as he or 

she directly has to touch the device screen with one finger and perform a special predefined 

unique gesture. 

 

The gesture was defined by using Google’s “Gesture Builder”. This is a simple but powerful 

application (supported since Android 1.6 and included in the API), which allows developers to 

create, load, store and recognize unique gestures. Once the gesture is created in the builder 

application, it can be saved as library and used afterwards in any other application. 

In order to make use of the created gesture, it has to be implemented in the target application 

via a GestureOverlayView. A gesture overlay is a simple, invisible drawing board, on which 

the user can draw his gestures. The overlay can be on top of other views and recognizes 

gestures in either the whole application or only a specific part of the application [29]. 

 

A circular gesture is used, as it is still complicated enough to not be done accidently but easy 

enough to remember or perform after the application can be finished and the person is still 

under stress. The circular gesture has to be performed even in a specific direction and with a 

minimal radian. In order to check for an exact gesture, a much more complicated 

implementation would be necessary. For example, if the user is only allowed to draw the circle 

in a specific amount of time and with a defined radian, it would require a lot more mathematical 

operations. As this is mainly a proof of concept and works already pretty well with the 

directional circle gesture, further improvements do not seem necessary. 

 

 

The left Figure 18 shows a similar circle gesture 

like the one used in the following designed 

application. The circle is not fully filled as shown 

in the figure and directed clockwise. 

 

With the direction of motion, it is possible to 

further secure the application, as only one 

specific direction allows to unlock the screen. 

Though the shape of the circle does not have 

exactly to match the predefined one, the direction 

allows to enhance the difficulty a bit further. With 

the generated gesture, it was possible to change 

the design of the application and enhance the 

security (in terms of accidental closing the 

application or stopping the data transmission). 

 

Only after performing the defined circle gesture, 

it is possible to unlock the device and stop the 

data transmission.  

 

 
Figure 18: Circle gesture with "Gesture Builder".  
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After implementing the gesture overlay as well as changing the functionality slightly 

the final application looks as follows. In order to start the accelerometer reading as well as 

data processing, the user has to press the button in the middle of the application, which 

changes the view to the right application interface, shown in Figure 19 below. 

 

The left application interface shows the start button, which basically is a big button with an 

overlaid image. Once the user presses the button, the view switches to the other screen and 

the gesture overlay is enabled. The user has to perform the circular gesture and can unlock 

the screen. The circle has to be performed from left to right (a graphical hint would be 

implemented in the final result).  

 

Annotations: 

In this app version two additional small buttons are included, which are necessary for the 

application. The Save button has the same functionality as in the other applications and stores 

a .txt file with the raw data as well as a .jpg file with the plotted curve. The Restart button is 

special and was introduced only in this app version, because the control of the application is 

only in one activity, the main activity. In order to switch between the both screens, a view 

switcher is used, which shows one component and hides the other ones. It is possible to cycle 

between the saved views in this view switcher. In order to show the starting view, it was 

necessary to implement the Restart button, as the user needs to switch back to the main 

screen. 

 

Although the design is unique and great, it was not used for the final application. One of the 

reasons, why it has not been chosen is, that a gesture is often hard to perform in a stressful 

situation, especially in a time critical event. Also the validation of a specific radian for the circle 

as well as size would require much more calculations and resources. The available resources 

are used for the data transmission as well as the calculation. 

Figure 19: Gesture design implementation of the app. Design made by Melanie Kain & Nina Hladil. 
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3.3.4 Final Prototype 
This version of the application is the foundation for the algorithm development in Chapter 4. 

Only the menu was changed for each algorithm, but the base application is equal to the 

following explained design.  

Again this designs intention is to support the user and not to overload him or her with 

information or functionality. Therefore, only two Buttons are present in the main activity: 

 Start button: Again this button starts the accelerometer and the calculation as well 

as the transmission to the server. It is slightly bigger than the Stop button, as the 

user should directly see where to activate the app. Upon pressing the button, the 

data acquisition starts. One special feature here is, that the Stop button will not get 

enabled, if the Start button was pressed (as in previous versions). 

 Stop button: This button can only be pressed, if the user unlocks it with the small 

menu, located in the upper corner of the interface. Once the button is pressed, the 

accelerometer stops the data acquisition and the calculation and the application 

switches to another activity which holds the results. 

 

The left part of this Figure 20 again shows the application after launching it and also after 

restarting it. In the right part of the figure the running application is shown, which has a blocked 

Stop button. Once the stop button is pressed the results are visualized on a second activity. 

This basically means, that the application has further pages (like a website and the user is 

changing from the homepage to another). 

With the additional activity the resource management is drastically improved as well as the 

readability. The results do not have to be overlaid over the reanimation screen and can be 

visualized in the background. The visualization is performed by another thread, while the 

saving of the data is also performed in this thread. The data can be saved in a .csv file in this 

application in order to make further analyses with other tools much easier.  

Figure 20: Final used application design. 
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The Figure 21 shows the resulting screen on the left, which is opened, after the Stop button 

was pressed. It allows the user to zoom in again in the curve as well as store a snapshot and 

the current data on the phone. On the right the notification is shown, after the Save button is 

pressed.  

 

Special feature – menu: 

As this version of the app is also used for the algorithm implementation, it includes a menu 

which offers great versatility for the user and especially for configuring the algorithm. Inside 

the menu there is a menu item to adjust various parameters of the algorithm. The menu is 

also used to unlock the Stop button, as it is only a small button in the right corner of the device 

screen and is hard to be accidentally clicked. 

 

In Figure 22 above a subearea of the application, which includes the configuration menu, can 

be viewed. It has three menu items, where one is for configuring the IP address of the sever 

(if it changes), the other for the algorithm configuration and the last menu item unlocks all 

locked buttons (re-enables them). 

 

Figure 22: Subarea of the application - menu. 

Figure 21: Final application result screen and saving. 
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Special feature – full screen: 

Another important part of this implementation is the full screen mode, which is used to hide 

the virtual system buttons. On older smartphones there are often hardware buttons, which 

have to be overridden in order to block their usage. On newer smartphones it is at least 

possible to hide them partially with the full screen mode. In order to switch back from full 

screen to normal, the user has to perform a special gesture. This blends the system buttons 

in as well as the notification bar (see Figure 23). 

 

Special feature – blocked buttons: 

By using the standard Android operating system, it is not possible to override all system 

buttons, especially the home button is reserved and blocked. In order to override this button, 

the operating system needs to be changed. Still it was possible to override at least the back 

button of the application, which asks the user if he or she really wants to close the application 

(same for menu button if present). The message box, which pops up, can also be seen in the 

above Figure 23. It should prevent the user from accidental closing the application or at least 

ask one more time if he or she really wants to terminate it. 

 

Annotations: 

Of course this final application and its design is not perfect, though it was already optimized 

for different types of smartphones as well as operating systems. For example, the menu of 

the application uses the Toolbar functionality of Android 6.0, which requires a very up to date 

operating system. Though it is not necessary, because inside the code, the requirements are 

checked dynamically with annotations7. This allows even older smartphones and operating 

systems to run the application with a slightly changed appearance (base app stays the same). 

                                                           
7 Annotations are metadata, which basically means they contain information about a code block for 

example. They give the compiler additional information about a piece of code or method [30]. 

Figure 23: Fullscreen and back button overridden. 
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3.4 Implementation of the EMD Visualization Server 

In the following a short introduction to the server and the website is given. The server acts as 

connection between the android application and the website clients. Currently the structure of 

the server, website and android clients is as the following Figure 24 shows. 

 

 

3.4.1 Server development and setup 
The server is able to handle multiple connections, but currently it only processes one android 

client to many website clients, as shown in Figure 24 above. In a further expanded project the 

server is able to distinguish between various android clients and PC clients. He is even 

capable of handling multiple connections now, but the function is not really used. In order to 

handle the multiple connections, each android client and PC client gets a unique identification 

number on connecting to the server and can be placed in separate rooms. Possibly the easiest 

way is to imagine multiple chat rooms, where the PC clients can connect and the chat room 

theme (the acceleration data) is provided by the android client. So each android client has its 

own room and only those, who need the information from that specific device, are in this room. 

 

For the server the technology of NodeJs is used (as described in Chapter 2), which allows a 

bidirectional communication over Websockets. The server is running on a computer of the 

university of applied sciences St. Pölten in Austria. 

The server gets the information from the android phones and processes it further to the 

website. The data is currently only stored for a short amount of time on the server and always 

dumped after some time period. Although it would be possible to store the data in a database 

like MongoDB8 (a database system). As for the proof of concept was no need for such a 

feature, it is currently not implemented, though it is possible to add later on. 

 

In general, the server is programmed for further enhancements. It is easily scalable and can 

be further extended by a database, which stores the accumulated data. Even multiclient 

handling is possible with the current setup. Basically this means, that every android client gets 

its own website and the control operator only sees the information for the actual call and not 

the call, another control operator is dealing with. The server is also a lightweight system, which 

runs within the node runtime environment and allows easy usage on other computers, as the 

whole node framework and server is portable. 

 

                                                           
8 MongoDB is a document-orientated database, which uses no SQL. MongoDB performs extremely well 

and is easily scalable. It is based on a collection of documents with key/value attributes [31]. 

Figure 24: Data transmission schematic. 
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3.4.2 Website development and setup 
For the website various technologies have been combined as well. The website itself is 

programmed in HTML and makes heavy use of JavaScript. For the styling plain CSS is used 

with external resources (mainly for the icons). As support the following two libraries are used: 

 jQuery 

This powerful tool makes it easy to manipulate a page of HTML after it is displayed 

by the browser. User interaction can be caught, tools can be used to create 

animations and communicate with a server [32]. 

 D3.js 

D3.js is a JavaScript based library, which allows manipulation of documents, based 

on data. With D3.js it is easy to bring data to life by using HTML, SVG and CSS. In 

general, it allows binding arbitrary data to a Document Object Model (DOM) and then 

apply data driven transformations to it [33]. 

 

Combining all these resources together resulted in the website, which is available all over the 

world under the following Domain: http://lifestream.fhstp.ac.at 

 

The website is shown to every client, who is connected to the server as usually and not over 

the Websockets connection and the specific messages, that are shared between the android 

client and the server. The server distinguishes between normal clients and android clients, 

who transmit data to it. If a normal client (e.g. computer, smartphone, etc.) accesses the server 

over the browser, it will receive the website as result. Basically they send a http request and 

the server responds with the website. After they received the website while an android client 

is connected and streaming data, every normal client can view the reanimation data.  

 

Figure 25: Website design and home page view. 

http://lifestream.fhstp.ac.at/
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Figure 25 shows the current implementation of the website and the design. It is 

orientated on the application design and tries to be simple as well as easy to understand. On 

the main page or home page the user can directly view the updating chart, once an android 

client is connected as well as the current frequency on the right side of the chart. The other 

parts of the page are currently not fully finished but have the following purpose and name: 

 Help: 

This subpages purpose is for user questions or information about the reanimation 

curve or how to read the frequency and data information. It is also intended to be 

used for asking questions like in a forum. 

 App: 

On this page the user should be able to download the android application, if he has 

not already. There is also a link to the project on GitHub in order to download it there 

as well as the source files. 

 Info: 

Here the user can get further information about the general project and the idea 

behind the reanimation process in time critical situations. The main purpose is to give 

further information and enlighten laypersons. 

 About Us: 

This page is just reserved for personal information about the LifeStream project 

members and their contribution to the project as well as the partners of the project. 

 

On the main page the focus point is the updating line chart (using D3.js) and the right 

information column, which shows the important parameters of the reanimation (further 

information in Chapter 3.6). 

It is important to mention, that only the current data is shown to each client and not the past 

data, as this would not be necessary. For example, if client A connects at 10:00 am and client 

B connects at 10:05 am, assuming that an android client is streaming data, then client B will 

see the current curve of the reanimation from time 10:05 and not from beginning when the 

android client connected. It would make no sense to show client B the data from the begging 

of the stream, as it is already in the past and does not correspond the current reanimation 

curve. 

 

All in all, the website is a simple but effective tool for the visualization. Although the website 

is not optimized for all devices currently, it is very useful for the dispatcher already. Of course 

the final project would not include a website for the visualization. The server would stream the 

data to the headquarters and there to each dispatcher’s computer. As they are using a 

software for the standardized question scheme as well as for the whole process, the 

visualization of the reanimation data and the calculation have to be done inside the running 

system. 

Therefore, the websites purpose inside this project is mainly to show a possible 

implementation of the reanimation curve, as well as the calculated parameters and the gained 

information out of them. For the final project it is necessary to adept the data and the 

presentation of it to the current system and integrate it. It would be inefficient, if the dispatcher 

had to open a separate website during the time critical situation. 

 

Once again it has to be mentioned here, that the current implementation of the website is only 

finished for the main page, as it is the most important part for the prototypic realisation of the 

project. The above described features of the subpages are currently only partially 

implemented and can change in the final version of the website. Also the design is currently 

only a proof of concept and can be further adapted in later versions. 
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3.4.3 Data transmission 
The data transmission is one of the main parts during this project and the thesis, as with the 

delivery of the data the whole idea stands and falls. If there is no connection to the internet 

available, the data would be gathered on the smartphone, but could not be transmitted to the 

server or the website in order to visualize it there. Nowadays nearly everywhere is an internet 

connection available, but often enough the connection is not appropriate or unstable. Given 

the situation of unstable and unsecure connections a fast data transmission and small data 

package size is important. Therefore, the data is packaged into the JSON format, which is a 

lightweight data interchange format. The format is based on JavaScript and uses two 

structures: 

 A collection of name and value pairs, often referred as objects. 

 An ordered list of values, often referred as array. 

 

The charm of JSON is the simplicity and the cross platform usage it guarantees. A message 

formatted according to the JSON standard is composed of a single top level object or array, 

where this can contain further arrays or objects [34]. 

Inside the android application two small JSON object are created before sending them to the 

server. One includes the information for the chart, the other the calculated parameters out of 

the raw data. The data is split into two small packages, as the second one does not need to 

be sent every time, the sensor measures a new value. The server receives the data packages, 

which include the information every time the sensor updates (fixed point of time, more in 

Chapter $). The packages contain various information as seen in Listing 1 below. 

The above listed packages contain no real values. The value is different in every single 

package, though the key or identifier is the same. Each package then is read on the server 

and redirected to the website, where the information is retrieved and visualized. 

In order to send the data or stream it from the android client, the Socket.io technology is used 

(see 3.2.1 Hardware considerations). By implementing the Socket.io technology the android 

client and the server can communicate in both ways. If the android client has information (the 

gathered and calculated data), he sends or emits a message to the server with a tag. The 

server listens for messages with that special tag and further deals with them. 

The data is sent over Transmission Control Protocol (TCP), which reliably sends a package 

to a device on the same or different network. If a package does not arrive at the receiving 

point, the protocol resends it, until it arrives. This is necessary for the calculated information, 

e.g. the frequency of the reanimation, as this package only gets sent at a fixed time stamp. 

The data of course could be transmitted using User Datagram Protocol (UDP), because if a 

data point is lost, it would not be that harmful. Nevertheless, the data is also sent with TCP, 

as only a small amount is visualized and nearly each point is necessary for the visualization. 

01  { 

02      "time" : value, 

03      "magnitude" : value 

04  } 

05 

06  { 

07      "freq" : value, 

08      "freqR" : value, 

09      "timeMeasure" : value 

10  } 

 

Listing 1: Default data package.  
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For the server and website communication the same system is used. Once the server 

receives a special message from the browser, he responds with the webpage. The address 

of the website contains the special request for the server. Even the website can send 

information to the server (e.g. the unique identification). 

 

Another important part of the data transmission is the optimized android application. In order 

to further reduce the resource usage, the accelerometer sensor usage and the background 

process are optimized. For example, during the application runs a background thread9, that 

performs the calculation on the device and transmits it over to the server. The streaming 

happens also in another thread. 

 

3.4.4 Visualization 
For the visualization on the android side an open library is used, which allows to plot data 

points in a line graph with some features. For example, it is possible to zoom into the chart 

and move around there. The used library is called “aChartEnginge” and is available under 

http://www.achartengine.org/. 

It is a simple charting software for android applications, like mobile phones, tablets, etc. and 

has various interesting features that allow simple but powerful graphing. Using the charting 

software, the reanimation data is plotted after the application finishes. 

 

On the website the visualization is more advanced as the dispatcher must be able to get the 

relevant information out of the graph and the website easily. Therefore, the visualization is 

separated into two major parts. On the one side is the dynamically updating line chart, which 

is plotted with D3.js (see 3.4.2 Website development and setup) and constantly plots the 

acquired reanimation data from the smartphone. On the other side is the information section, 

which includes information about the registered clients and the reanimation parameters (e.g. 

the frequency). The following Figure 26 shows an example partial visualization of the website 

using the algorithm for the study with the application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further explanation for the visualization is given in the following Chapter 4, along with the 

corresponding algorithm used for it. 

                                                           
9 A thread is a portion of code, that may be executed independently of the main program and workflow. 

This allows the main program to perform other tasks in the meantime. 

Figure 26: Partial visualization example on the website. 

http://www.achartengine.org/
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4 Design and Development of Chest 
compression depth algorithm Approaches   for the 
Mobile First Responder Client 

In this chapter, which is one of the major parts of the thesis, some of the tested algorithms are 

described. Only the most interesting ones, as well as their integration in the above described 

application are discussed. Of course there are further algorithms and approaches for the chest 

compression rate (CCR) and chest compression depth (CCD) detection, but the aim was to 

compare some of the most promising ones.  

Each algorithm is described with the basic ideas and limitations using it and the effect on the 

CCR and CCD detection. For each algorithm later a comparison is made in Chapter 5, which 

shows the problems, solutions and limitations of each implementation. Primary to the 

implementation and testing of algorithms it is important to further investigate the 

accelerometer, the smartphone and the general physical interaction under the condition of 

using the low cost accelerometer sensor in smartphones. It is difficult to make a general point 

for the chest compression rate and chest compression depth detection with smartphones, as 

every smartphone is different. Not only the operating system is different (e.g., Android, IOS), 

but also the hardware and the used components. With the aim of creating a widely adaptable 

application, the further investigation in sensor usage and physics is necessary. 

 

4.1 Accelerometer research 

The following subitem covers most of the theoretical concepts for acceleration and the 

accelerometer in smartphones. Prior a short review of the three major quantities is given, as 

the whole algorithmic calculation is based upon the physical relation behind these three: 

 Acceleration 

Acceleration, which is measured by the common low cost accelerometer sensor in 

the smartphone, describes the rate of change of velocity over time. Acceleration 

happens when an object speeds up, slows down or changes its direction. The 

acceleration is a vector quantity, which means that it is directional. Directional 

movement along the x-axis means for example, that the phone is moved to the right 

or to the left. The direction is indicated with +/- signs and can also be understood as 

accelerating and deaccelerating of the phone. 

 

 Velocity  

With velocity the rate of change in displacement is described. Acceleration is also a 

vector quantity and tells the magnitude and direction the object is moving.  

 

 Displacement 

This quantity is the major part of the thesis beside the frequency. Displacement is 

always equal or less than the distance, which describes the total way an object was 

moving. For the chest compression depth only the displacement is important, 

because it is not the point of interest how many cm’s the reanimating person has 

moved with the phone. Only the final position is important, related to the starting 

position, because this can make a statement if the chest compression depth was 

achieved or not. For example, if the phone is lying flat on chest, which is position A 

and the layperson pushes the phone, then position B is the point, where he starts to 

release again the push. The displacement between A and B can be calculated, which 

results in the chest compression depth (ideally). 
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Most of the following research results are gathered from various books, like the 

“Professional Android Sensor Programming” [35] or community sites like stackoverflow or 

from Google Tech Talk videos. There are numerous theories around distance or displacement 

detection with smartphones and of course with sensors. Often those theories use a 

collaboration of multiple sensors, which is condensed under the term “Sensor Fusion”. With 

Sensor Fusion it is possible to eradicate the weaknesses of each sensor and combine them 

to an enhanced digital sensor. Digital, as most of the sensors or nearly all are physical like the 

accelerometer or the magnetometer and combined they result in a kind of imaginary sensor. 

 

During the application development and especially during the algorithm implementation it 

became more and more clear, that it is difficult to calculate the depth or travelled distance out 

of the accelerometer (usually it is used only for shake or tilt detection on the smartphone). Of 

course there are projects that calculate the distance out of accelerometer readings, like fitness 

trackers, but those use special sensors, which are developed for this purpose. During this 

thesis only low cost accelerometer sensors are used and no other sensors, as also older 

phones include the accelerometer sensor. Of course nowadays nearly every smartphone 

includes a fairly large number of different sensors, like the magnetometer, gyroscope or even 

location based sensors for position detection. By only using one of the oldest sensors, the 

accelerometer, it is difficult to make a point about the travelled distance of the smartphone. 

 

Based on the following research results the algorithms are chosen and adapted. Each 

algorithm has its advantages and disadvantages. There is no general implementation 

available for this specific type of problem, as there are numerous things to consider, like the 

sensor, the smartphone or even physical limitations. 

 

4.1.1 General Calculation Idea & Sensor 
Physically and theoretically it should be possible to calculate the travelled distance of the 

phone by using the accelerometer as the following two equations result in the travelled 

distance. If the acceleration is integrated once, the result is the velocity of the object (in this 

case the smartphone with the accelerometer sensor). After a second integration the result is 

the travelled distance [15], [36]. 

 

𝑣(𝑡) = 𝑣0 + ∫ 𝑎(𝑥)𝑑𝑥
𝑡

𝑡0

 Eq. (11) 

 

In the above equation the velocity is calculated in relation to time starting with the initial velocity 

𝑣0 at the timestamp 𝑡0. The acceleration 𝑎 ∶ [𝑡0, 𝑡1] →  𝑅 indicates an acceleration value for 

each time step between 𝑡0 and 𝑡1. The velocity equation is the first part of the whole calculation 

in order to find the distance, the other consists of the following formula [15], [36]. 

 

𝑠(𝑡) = 𝑠0 + ∫ 𝑣(𝑥)𝑑𝑥
𝑡

𝑡0

 Eq. (12) 

 

In this equation 𝑠0 is the distance travelled at 𝑡0, which is ideally the starting position of the 

phone. So after integrating the acceleration twice, the result should be the travelled distance 

or preferably a three dimensional point in space [37]. 

The following Listing 2 on the next page shows a pseudo code of this simple calculation. The 

purpose is to show, how fast and easy the calculation could be done, if everything works as 

intended. 
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Despite these equations seem fairly simple or at least easy to implement, they are practically 

not useful and even not possible. The error, which propagates after each integration is horrible 

as well as some other problems, which are explained in the next subitem. 

Previously there is a short introduction to the general accelerometer sensor behaviour 

together with an explanation of how to interpret the raw data and its format. 

 

Sensorbehavior 

Accelerometers are not able to distinguish between acceleration as a result of gravity and 

acceleration as a result of movement. This results in an acceleration of −9.81 𝑚/𝑠2 in resting 

position along the z-axis. So, even if the phone is lying flat on the table, the z-axis reads the 

gravitational force, which has to be excluded from the further calculation. The measurement 

of acceleration is performed on the x-, y-, and z-axis (see 2.2.2.1 Accelerometer basics).  

Programmatically the values can be accessed over the values array, which is returned by the 

sensor event [38]. The array contains the following values: 

The following Figure 27 shows the measured data of a linear accelerometer sensor. Although 

it is the x-axis, which is described, the basic idea is the same for the other axes as well as the 

normal accelerometer sensor. 

 

01  Sensorevent with „values“ array { 

02      float x = values[0]; 

03      float y = values[1]; 

04      float z = values[2]; 

05  } 

01  arrayVel;           //Create array for velocity values 

02  arrayDist;          //Array for distance values 

03 

04  for each sample i do 

05      dt = oldTime – newTime    //if constant sampling use 1 

06 

07      arrayVel[i] = previous velocity + (acceleration +  

08                previous accelreation) / (2 * dt) 

09 

10      arrayDist[i] = previous distance + (distance + 

11                 previous distance) / (2 * dt) 

Figure 27: Sensor data from moved x-axis.  

Listing 2: Pseudo code of a simple calculation for distance. 

Listing 3: Reading sensor values showcase. 
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As the accelerometer sensor provides the direction of movement (+ and -) it is easy to 

see where the phone was moved along the x-axis. In Figure 27 a movement from left to right 

is shown as sharp change in the acceleration value in the positive direction, followed by a 

sharp change in negative direction. The positive value indicates a force was applied in positive 

direction (acceleration) and the negative value indicates a force being applied in the negative 

direction of the x-axis (deceleration). The acceleration happens four times each at 1s, 2s, 3s 

and 4s, indicated through the peak in positive and negative direction [35]. 

 

Linear Accelerometer 

As already mentioned, the basic accelerometer is a hardware sensor, which measures the 

acceleration along three axes. On one axis, the z-axis, the sensor includes the gravitational 

force, which can be filtered out with various filters like a low pass filter or high pass filter, but 

can also be avoided directly by using androids LINEAR_ACCELERATION type for the sensor.  

Though using this sensor type sounds fairly obvious and good, it must be said that it is not as 

accurate as it might seem, because there are some simple problems, when subtracting the 

gravity. 

The linear acceleration is basically sensor fusion, which uses the accelerometer and 

orientation to know where the gravity is directed, in order to remove it. The sensor delivers 

data, that was processed by a high pass filter, so that the gravity or any other slowly changing 

acceleration cannot pass through the filter. To compute the linear acceleration from device to 

device, various sensors are used. Some devices use the accelerometer plus the 

magnetometer and others use the accelerometer plus the gyroscope [39]. 

 

Sensor delay 

Another important part of the android accelerometer is the sensor delay. The sensor delay is 

used to adjust the sampling rate of the sensor. There are four sensor delays available in 

standard android, which set the respective sampling rate for the sensor: 

 SENSOR_DELAY_NORMAL (200 microseconds delay) 

 SENSOR_DELAY_GAME (20000 microseconds delay) 

 SENSOR_DELAY_UI (60000 microseconds delay) 

 SENSOR_DELAY_FASTEST (0 microseconds delay) 

 

So, for example, if the sensor acquired the data with a sampling rate of 

SENSOR_DELAY_NORMAL, it would deliver values at 200 Hz, so every 5ms. The value of 

5ms results of the fact, that the frequency 𝑓 is the reciprocal of the period 𝑇 [40, p. 157]. 

 

𝑓 =
1

𝑇
   →    𝑇 =

1

𝑓
 Eq. (13) 

 

The sensor delay can also be adjusted manually, which would greatly enhance the algorithm 

and the algorithmic calculation in the following implementations. There is an issue though with 

the sensor rate, as the delay, which is specified, is only suggested to the android operating 

system. The android operating system and other running applications, like phone calls, can 

alter this delay, which results in slight changes for each sampling rate. These changes can 

accumulate up and contribute largely to the calculation error. 

In the algorithms, the delay was adjusted to each smartphone, because as primary researches 

with various smartphones have shown, each smartphone reacts differently to the fixed or 

given sensor delays. According to the real sampling rate, which slightly varies from the 

adjusted one, the algorithm is programmed (most of the algorithms heavily rely on the 

sampling frequency). 
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4.1.2 Issues, Limitations & Hints 
Along all the features and possibilities of digital or analogue accelerometers come various 

limitations or issues. Some are mentioned already during the other topics of this thesis, but 

the major issues will be described in more detail now. Also some hints and ideas for future 

purpose are given, though most of them are used during this project and thesis. 

The main problem upon using the above mentioned equations is, that accelerometers are bad 

at dead-reckoning (continuous position determination). Accelerometers have some noise 

which varies from smartphone to smartphone as each has its own manufacturer and device 

type. Theoretically the equations could be used to determine the position of an object, in this 

case the smartphone in a three dimensional space. In practice the function of 𝑎(𝑡) cannot be 

ascertained as the acceleration values are measured at discrete moments. This means, the 

sensor delivers a value at a fixed time stamp, which results in a time series of a sequence of 

quantities. As a result of this behaviour the normal formula for calculating the distance out of 

the acceleration can only be applied piecemeal. The results of each piece are added up in 

order to determine the final position. The easiest way is to assume, that the acceleration 𝑎 is 

constant during a time interval of 𝑡𝑖 and 𝑡𝑖+1. 

 

Another issue of analogue and even digital accelerometers is, that they have some noise. The 

noise can be filtered of course with various filter types (explained in the following subitem) but 

normal accelerometers produce raw data, which is not filtered or smoothed. This noise will 

normally result in a non-zero mean, if the noisy values are used in the formula. So when 

integrating the acceleration signal, the non-zero mean is continuously added and accumulates 

in the resulting velocity signal and later of course in the distance integration. This behaviour 

is called sensor drift, as the integration starts fairly well, but quickly accumulates the errors 

and the resulting values drift away. 

Also considered must be the usage of the Pythagorean theorem in order to compute the value 

or magnitude of the acceleration. As the direction of acceleration is not relevant (it does not 

matter if the device is accelerating or deaccelerating), the following formula should be applied 

to the raw values, before the integration or further proceeding happens. 

 

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  √𝑥2 + 𝑦2 + 𝑧2 Eq. (14) 

 

By using this equation, also the facing of the smartphone is irrelevant. So if the reanimating 

person is putting the phone face down on the chest of the reanimated person, the values still 

will be positive, because of squaring. For a better imagination, why the above formula should 

be used, a driving car can be imagined. What if, the car is accelerating with 5𝑚/𝑠² for 1s and 

then suddenly deaccelerates with 5𝑚/𝑠² for 1s – the change would be zero. However, if the 

value of acceleration is used, something else is computed, as the value would not be negative. 

 

One more obstacle is, that unless the device is accelerating or deaccelerating at all points in 

time, a constant non-zero velocity and a constant zero velocity will both contribute nothing to 

the double integration. Therefor it is impossible to tell a non-zero velocity from a zero velocity, 

and therefore a calculated distance is in fact useless. For example, if acceleration is measured 

on a device lying flat on the table, it will measure 𝑥 = 0, 𝑦 =  0, 𝑧 =  −𝑔, where 𝑔 is the constant 

acceleration due to the gravity (if no linear acceleration sensor is used). If the measurement 

is done while the device is traveling at a constant speed of 10 meters per second for example 

in the x, y or z direction it will also measure 𝑥 = 0, 𝑦 = 0, 𝑧 = −𝑔 because it is technically not 

accelerating. The device is traveling at a constant speed and therefore not accelerating – so 

the part of the travel, where it moves at constant speed, is not contributing to the integrated 

measurement [35]. 
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4.1.3 Possible Solutions & Filters 
As the problems are clear and described, there have to be solutions in order to avoid some of 

the issues or limitations. Of course, many more than the following described solutions exist 

and some even are not that useful for the specific problem in this thesis. The major problem 

of different sensor types, some measure more accurate, some not, is hard to overcome, as 

every manufacturer has his own implementation. If all accelerometers would have nearly the 

same standard, the problem could be solved by the root. Anyway, if not there, it is still possible 

to enhance or standardize the output in some ways. The following methods shall give only a 

short introduction and will not be further explained in detail, as this would consume too much 

time. The presented methods are heavily inspired by the fantastic book “Professional Android 

Sensor programming” by Milette & Stroud [35]. 

In order to remove the noise, as well as the gravity, often filtering is used. With the filters 

described below the raw values can be smoothed and the gravity factor is removed. However, 

it is better to use the linear accelerometer of the android system (the fused sensor), if present 

and available, as here the gravity is already removed and the values are much smoother. After 

the gravity is removed or the values are read and filtered with a respective filter, it is best to 

calculate the magnitude of the acceleration values (see 4.1.2 Issues, Limitations & Hints) 

before continuing with further calculations. The reason is, that it is not necessary in this thesis 

to know the direction of the accelerating smartphone, because the reanimating person could 

place it slightly crooked or facing down and if the algorithm only relies on one axis, the results 

would be distorted. This allows also to set a threshold for a minimal acceleration in order to 

exclude an incidental acceleration by a person who bumps the phone. Only real acceleration, 

which is produced by a shake or push on the smartphone needs to be detected. 

Generally, it is best to filter output from individual sensor readings or fuse the results from 

multiple sensor. Even if sensor fusion is used, it is good to filter the results further or work with 

other techniques to reduce the errors. First the filters for specific problem types will be 

described, then some other techniques to further enhance the output of the sensors (either 

single or fused ones). 

Before the filters are described, a short list of possible error types is given for a better 

understanding (most of them have been covered already in the previous sub items): 

 Systematic errors 

Systematic errors are constant changes in accuracy or precision10 of the sensor due 

to external or internal influence. For example, if the phone is placed near a magnet, 

the sensors, that rely on magnetic fields, are disturbed. 

 Noise 

A noise is a random influence on the generated sensor value. 

 Drift 

A drift describes a slow wandering of the data away from the real world value. The 

best example here is the double integration of the acceleration values, which drifts 

away due to accumulation of errors. 

 Offset 

If the output is not equal to zero, when the measured property should be zero, the 

sensor has an offset. 

 Time delays 

As android is a no real time operating system, some values can be delayed, which 

results in incorrect timestamps – one of the major problems for the algorithms. 

                                                           
10 The actual value the sensor tries to measure and the one it measures are often different. High accuracy 

means the value is close to the actual one, where high precision means the values are clustered around 
a particular value, whether it is the actual one or not [35].  
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The biggest issue is still the integration error and the accumulation of it during the 

integration. Like the acceleration example shows, the error will grow exponentially even if the 

device is not moving, as the sensor continuously produces drift over time and includes noise, 

which adds up to the final result [41]. In order to reduce this and the other errors filtering is a 

good approach. Following filters are commonly used for filtering various types of sensors. 

During this thesis they are used in some of the algorithms in order to filter the raw 

accelerometer data. 

 

Low-Pass Filter 

Low pass filtering is, as the name suggests, a filter, that lets low frequencies pass and cuts 

off high ones (based on digital signal processing theories). This filter type is ideal for 

eliminating noise above a certain frequency. The implementation of this filter can be found in 

the following sub item (4.2 Implemented Algorithms) as well as the other filter implementations 

in java. With the 𝛼 the filter can be fine-tuned in a range of 0 to 1. On the one side, if alpha is 

very small, the effect of the filter is small, but the changes in the input are allowed to build up 

quickly. On the other side, if alpha is close to one, the effect of the filter is large and the input 

is allowed to build up very slowly. For this filter the desired time constant and sample rate 

should be known, because this allows to pick an appropriate alpha value. As the sensors in 

Android treat the requested sample rate only as suggestion, it becomes hard to actually fix a 

sample rate and time constant (however the approximate rate is often good enough) [35], [42]. 

 

High-Pass Filter 

Again, as the name suggests the high pass filter lets high frequencies pass and reduces the 

amplitude of signals, which have a frequency that is lower than the threshold frequency. A 

high pass filter can be used to measure the real acceleration of the device, as he eliminates 

the contribution of the force of gravity. Again the implementation of a simple high pass filter in 

java can be found in the appendix of the document. 

 

Simple moving average (SMA) 

The moving average provides a better smoothing against single data point spikes, that occur 

due to drift or noise. The SMA is often called the running average, as it finds the arithmetic 

mean of the most recent 𝑘 values in a set of data, that continuously increases. The variable 𝑘 

stands for the size of the “window”, which is basically the area that is averaged. This method, 

though needs at least the first 𝑘 values to work and for the first values normally zero is used. 

As the values are collected fairly fast with the accelerometer sensor, this little disadvantage 

will not take into account that hard. The implementation allows to push new values to the array 

of already collected values and continuously returns the average. 

A few things are to note at this algorithm, because if the window size is large, a sudden change 

in data values may take too long to be seen in the moving average and the calculation cannot 

be done, until there is sufficient data available. On the other side the smoothing parameter or 

window size must be chosen large enough to adequately smooth the data. 

 

Kalman filter 

This filter can provide excellent signal processing results, but is complicated to implement for 

even the simplest examples. The algorithm is fed with noisy measurements, some predictions 

about how the measurement’s true value is behaving and some information about the forces, 

that are causing the system to change. This filter type is extremely flexible and can be used 

to smooth high-frequency noise or to isolate a periodic signal. If functionality beyond simple 

smoothing and simple high-pass filtering is needed, a Kalman filter will give the best result 

[43]. 
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Re-zeroing 

This simple but effective method can be used, if there is an offset present, that is affecting the 

application. During the algorithm development this method is used as the user has to lay the 

smartphone flat on the chest of the victim, which is the starting position. By using the re-

zeroing it is possible to find an initial zero point, which is important for the algorithm or further 

calculations, like the displacement. If no re-zeroing happens, the smartphone would produce 

values around zero, as the chest of the person is not totally flat. This little offset accumulates 

over time and heavily increases the overall error of the calculation. 

The re-zeroing is some kind of calibration, which needs to happen before any further 

calculation is performed. Some may think it would take a long amount of time, but the 

accelerometer is fast enough in reading values, that the required amount is easily collected in 

not nearly half a second.  The implementation will be explained during one of the algorithms 

in the following sub items. 

 

4.1.4 Research Insights 
Based upon former researches and a lot of trial and error with various accelerometer 

applications and implementations, a short list of important insights was created. The listed 

points include a software design consideration for the algorithms [38]. 

1. As the accelerometer signal is usually not noise free it has to be filtered. A possible 

filter could be the moving average, like the low-pass filter. The processed value is 

the result of averaging a certain amount of samples. 

2. Even with previous filtering the data can contain some errors, either due to 

mechanical noise or any other disruption. Therefore, it is often useful to implement 

another filter after filtering the raw data. Depending of the filtered data samples, a 

window is produced, which contains the real data samples (the simplest window cuts 

off all measured values above and under a certain threshold, e.g. all values smaller 

than −2 and greater than +2). 

3. It is good to specify a no movement state by using the re-zeroing method in order to 

calibrate the phone for a starting position. The calibration routine is done upon 

starting the application and specifies the starting point (ideally this is the chest of the 

reanimated person). 

4. The sampling frequency should be as high as possible, ideally the fastest available, 

which is normally 0ms delay. Although the algorithm has to be adjusted specifically 

to the real sampling frequency, as android takes the provided sampling frequency 

variable only as suggestion and the actual one is often different. A faster sampling 

rate implies more accurate results, as the error is reduced by using much more 

information. 

5. The time between the samples must be the same, which is important for the 

algorithmic calculation. Best to use is a fixed time interval, in which the current 

acquired value is passed to the calculation. 

6. Using the linear accelerometer is better for this kind of application, as the 

computation time is kept low. The implementation of android performs the filtering of 

the gravity and returns a nearly zeroed value for all three axes of the accelerometer. 

7. Further noise reduction could be achieved by using sensor fusion with other sensors, 

like the magnetometer or the gyroscope. Even other sensors, like the GPS  or the 

location service of android could be used for further enhanced results and position 

determination – generally contradicting to the thesis concept, as only the 

accelerometer low cost sensor should be used. 
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4.2 Implemented Algorithms (self-developed and existing) 

This part or subitem of the thesis is one of the major ones, as it includes some of the tested 

algorithms as well as the one, which is used during the field studies. Of course there are many 

more ways to get the location of the smartphone as well as the frequency in which it is moving, 

but the aim is to use the low cost accelerometer sensor, which is available in nearly every 

smartphone nowadays. Each algorithm is first described theoretically and later on the 

implementation is shown in a short listing or pseudo code.  

In general, the basic application stays always the same, only the data calculation and further 

processing from the point, where the accelerometer raw data is gathered, will be described. 

Also the transmission format to the server will be shown, or which information is transmitted. 

The most interesting part is the calculation itself, which will be analysed for each shown 

algorithm. For each implementation various fix parameters are defined, which are often 

adapted in each subsection of this point (in each algorithm). The problems during each 

experiment and the results will slip into the next experiment. Each further test gives more and 

more information about the overall process behind the distance and frequency detection. The 

following Figure 28 shows the basic structure for each presented experimental application: 

 

 

  

Name  

of the application and description 

Fixed parameters  

 Accelerometer Type 

 Measuring Frequency 

 etc. 

 

Specific properties 

 Special variables 

 Special menus or functions 

 etc. 

Code 

only for the calculation 

Problem description 

problems with this code or 

calculation method 

Solution/Future ideas 

possible solutions or ideas for the 

next application 

Values 

for the transmission 

Additional information 

maybe additional information or 

suggestions 

Figure 28: Flow of the algorithm description in the following part of this thesis. 
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4.2.1 Experimental App: Filtering & Integration 
The following explained implementation of an algorithm tries to get information about the chest 

compression depth, as well as the frequency, by using two simple filters as well as a slightly 

changed double integration of the acceleration. This algorithmic implementation is inspired by 

the following fantastic article “Development of Android Based Chest Compression Feedback 

Application Using the Accelerometer in Smartphone” [21], which also has already been 

mentioned in the related work. Unfortunately, it was not possible to fully reproduce the 

described results and the algorithmic implementation, as some accelerometers use an 

additional pressure switch in order to detect the starting point of each compression. 

Regrettably, this switch is not implemented in normal smartphones. A chest compression 

motion is a recurring action, where only the peak-to-peak distance is the only valid information. 

Peak-to-peak is from positive to negative, as this represents theoretically a push with a release 

afterwards. 

As already mentioned, accelerometers are not very handy and often produce noise, as well 

as drift, which should be removed before further calculations are performed. Therefore, a low 

pass filter was applied to the raw data in order to remove the noise and later a high pass filter 

for the drift. 

Before any further explanation can be done, the used hardware has to be mentioned. The 

phone used is a Google Nexus 5. In order to determine the real sampling frequency, the 

application “Sensor Rate Checker” was used, which reads out the real sampling frequency 

based on the given measuring parameter. Of course the sampling rate changes also on using 

the phone and background tasks, but it is possible to see at least the average offset from the 

real sampling rate. Some parameters have to be mentioned for this algorithmic 

implementation, as well as some special parameters. 

 

Fixed parameters: 

IP = “91.219.68.209” This stands for the address of the server at the university 

of St. Pölten. 

Port = “80” With this variable the port of the server is described. 

TYPE_ACCELEROMETER Upon using this parameter, the normal accelerometer 

sensor is used for the data acquisition, which still 

contains the gravity. 

SENSOR_DELAY_FASTEST In order to acquire more data points for the filtering and 

calculation, the fastest sampling rate is chosen. Though 

0ms is suggested to the operating system, it will not 

directly perform the sampling at this time. 

 

Special properties: 

∝1 = 0.3  By using such a low value for ∝1, it is possible to 

enhance the smoothing, as the noise of the 

accelerometer was very high. This variable is used for 

the low pass filter. 

∝2 = 0.8 ∝2 describes the smoothing parameter for the high pass 

filter, which is closer to one, as the drift of this specific 

sensor (in the used smartphone) did not have that much 

drift. 

 

https://play.google.com/store/apps/details?id=cn.mountqi.sensor.rate.checker&hl=de
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Code: 

The following code snippets are used during calculation and rely heavily on previous 

parameters, like the gathered acceleration values or arrays, to store them. In order to 

implement them in another application, it is necessary to also register the sensor as well as 

to allocate the appropriate arrays for storing the data. Within this application the calculation 

process was mainly done in the OnSensorChanged Method, which is fired every time the 

sensor reads new data or acquires a new value. The values are stored in the event variable, 

which is provided by the method. The first code part in Listing 4 describes the low pass filter, 

which is used during the calculation.  

After filtering the raw data, the values are processed further to the high pass filter, seen in 

Listing 5, in order to remove the drift of the phone. Again an example implementation of the 

high pass filter is shown in the Listing 5 below (other implementations are possible).  

Upon using the high pass filter, it is possible to remove the gravity, which is factored out of the 

values. By using the linear accelerometer, it would be possible to work with already filtered 

values, but during this algorithm implementation it was intentional, as the filter methods should 

be evaluated. 

 

When both filters have been applied, the calculation is performed. During the 

OnSensorChanged event the above shown filters are called and applied to the raw data. The 

values are then stored in an array whereby then further calculations are performed. As the 

sensor acquires multiple values, once the OnSensorChanged event is fired, it is possible to 

perform the calculation inside the function (at least theoretically). Normally it would be more 

practical to wait for some values or to gather them, until enough are there in order to further 

process them, but the sensor reads a lot of values, once the event is fired. The following 

Listing 6 below shows the main calculation method, which is performed every time the sensor 

acquires some new values.  

01 private float[] lowPass(float x, float y, float z, float a) { 

02      float[] filteredVal = new float[3]; 

03      filteredVal[0] = x * a + filteredVal[0] * (1 – a); 

04      filteredVal[1] = y * a + filteredVal[1] * (1 – a); 

05      filteredVal[2] = z * a + filteredVal[2] * (1 – a); 

06      return filteredVal; 

07      } 

Listing 4: Low pass filter implementation. 

01 private float[] highPass(float x, float y, float z, float a) { 

02      float[] filteredVal = new float[3]; 

03      float[] gravity = {0, 0, 0}; 

04      gravity[0] = ALPHA * gravity[0] + (1 - a) * x; 

05      gravity[1] = ALPHA * gravity[1] + (1 - a) * y; 

06      gravity[2] = ALPHA * gravity[2] + (1 - a) * z; 

07      filteredVal[0] = x - gravity[0]; 

08      filteredVal  = y - gravity[1]; 

09      filteredVal[2] = z - gravity[2]; 

10      return filteredVal;    

11      } 

Listing 5: High pass filter implementation. 
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The above Listing 6 shows the major part of the code containing the approach to find out the 

displacement of the smartphone. The code was interrupted at line 34 as there would have 

been a simple metric comparison between the starting position of the phone and the final 

position, which is stored in the 3-dimensional array distance. The name distance may be 

misleading, as it contains theoretically only the final position or actual position of the phone, 

but the name was chosen before the distance was calculated. On line 05 an if-statement is 

used in order to calculate at a fixed timestamp. This is needed, as the calculation should have 

discrete time stamps. It is also used in order to count up to seconds, which is necessary for 

the visualization, but not for the algorithm (therefore not shown). 

01 public void onSensorChanged(SensorEvent event) { 

02  if (started) { 

03  time = System.currentTimeMillis();  //Timestamp of event 

04 

05  if ((time - timeOld) > getNumberOfMeasures()) {  //Proceed 

only every X seconds 

06  dT = (time - timeOld) / 1000f;  //Milliseconds to seconds 

07  timeOld = time;   //Old time update 

08  timeCount++;    //Counting to seconds 

09 

10  float[] values = event.values;  //Copy the raw values 

11  accelValsLow = DataManipulation.lowPass(values[0], values[1], 

values[2], 0.3f); //Apply low pass filter 

12  x = accelValsLow[0]; 

13  y = accelValsLow[1]; 

14  z = accelValsLow[2]; 

15 

16  accelValsHigh = DataManipulation.highPassFilter(x, y, z, 

0.8f); //Apply high pass filter 

17  x = accelValsHigh[0]; 

18  y = accelValsHigh[1]; 

19  z = accelValsHigh[2]; 

20 

21  magnitude = (float) Math.sqrt(x * x + y * y + z * z); 

22  calcValueStack.add(magnitude);  //Add the magnitude to list 

23  float[] calcAccelVals = {x, y, z}; 

24 

25  //Perform the calculation 

26  for (int i = 0; i < calcAccelVals.length; i++) { 

27          totalAccel[i] += calcAccelVals[i]; 

28          velocity[i] = initVelocity[i] + (totalAccel[i] * dT); 

29         distance[i] = (initVelocity[i] * dT) + 0.5f * 

totalAccel[i] * dT * dT; 

30       initVelocity[i] = velocity[i]; 

31          } 

32 

33  //DETERMINE If distance greater than starting position and see 

if 5cm were traveled 

34 ... 

35 } 

Listing 6: Main calculation method upon acquiring new sensor values. 
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After both filters have been applied, the resulting values are used for the calculation. 

Each array in this calculation process starting at line 26 and ending at line 31 is 3-dimensional. 

At first the total acceleration is counted up, which never gets erased and increases by the time 

[44]. This is the special modification of the base algorithm:  

 

𝑠 = 𝑣0 • 𝑑𝑡 + 
1

2
• 𝑎 • 𝑑𝑡2 Eq. (15) 

 

By tracking the previous acceleration of all 3 axes, it is possible to make each following 

measurement integration based on instantaneous acceleration or change in acceleration. 

Theoretically the values in the array totalAccel should go from zero to a max value and 

then back to zero upon moving the device. Ideally equal parts are added due to acceleration 

and deacceleration of the smartphone. A short explanation to this idea is, that if the integration 

is performed without including the previous acceleration, this will end up with a value that does 

not include all the information [44]. 

 

As the resulting values in the distance array are in the unit meters, a conversion to 

centimetres (multiplying by 100) must be performed in order to make a declaration about the 

compression depth. To calculate the frequency, the occurrences of “right” pushes are counted, 

which are recognized, once the distance is greater than 5cm. The counting continues for a 

specific amount of time, for example 5s. After these 5s the number of correct pushes is 

counted up to 60s in order to check, if the frequency is right. Once again the right frequency 

according to the ERC standards would be 100 pushes in 60s. [10] The following formula is 

used on the website, after the specific amount of time has passed: 

 

(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑢𝑠ℎ𝑒𝑠 • 60𝑠)

𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠
 Eq. (16) 

 

For example, if the time is 5s, as mentioned above and the number of correct pushes in this 

time is eight, the resulting frequency for 60s would be 96, which is already pretty good and 

near the perfect amount of 100 pushes per minute.  

 

Values: 

For the visualization on the website the above described code needs to transmit the actual 

distance data as well as the frequency and the time. For the time in order to be displayed 

appropriately the code implements a simple if-statement, which counts up to 1s total. The 

sensor triggers for example every 5ms, which can be adjusted or read out at the beginning of 

the application. So once the sensor triggered 200 times and one second has passed, this 

information is sent to the server, where further processing happens. Listing 7 on the next page 

shows the transmission of the values. From line 01 to 08 the time counting is performed, which 

is of course not very precise, but gives some pretty good results, which are close to real world 

values. In this example the website updates every 5s, so once they have passed, the 

frequency based on the above mentioned formula is calculated. 

Line 13 creates a JSON object, which contains the filtered z-values of the smartphone, in 

order to visualize the moving curve of the phone on the website. The z-values are used, as 

the user normally pushes the phone away from him and towards him, once he performs the 

reanimation. Of course, this is not the depth, but it can give at least a hint about how hard and 

fast he pushes. For this visualization it was enough, in order to send the results to the website. 

On line 14 another JSON object is created, which contains the information about the distance, 

as well as the frequency, once it has been calculated (every 5s), as well as the time that has 

passed. 
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Problem description: 

By using this experimental algorithm, it was possible to detect that accelerometers and the 

smartphones do not always perform as intended. As already mentioned several times, it is 

nearly impossible to adjust the sampling rate to a fixed amount, as the provided value is only 

a suggestion for the android operating system. Of course this algorithm or implementation 

could be more refined, especially in the calculation in the OnSensorChanged method or the 

filters. Also the general integration is problematic, as the algorithm should work for at least ten 

minutes, but the values drift away already fairly fast, even by taking the total acceleration into 

account, which should reduce the error, as well as the two applied filters. Accelerometers are 

generally very precise, but bad at dead reckoning [44]. In order to get more optimized values, 

it is good to use sensor fusion, or more precisely, the linear acceleration of the smartphone. 

By filtering the raw values from the normal accelerometer, the drift and noise can be reduced, 

but not as well as by using the already implemented sensor fusion of the android operating 

system. The problem is, that not all older phones are able to perform the sensor fusion, as 

some of the sensors are missing for example. 

 

Future ideas: 

As the above shown code is only an example of an implementation, there are no real future 

plans for this application. Also the approach with total acceleration taken into account is not 

really helpful, as the phone has no real starting positon and always a different initial velocity. 

Of course this method could work, but based on the research and given hardware, it was not 

possible to achieve the wanted results. For the next applications the lessons learned have 

been, that every accelerometer and smartphone is different. Also the calibration at the 

beginning, e.g. a starting point or continuous recalibration is important in order to maybe 

reduce the drift or errors produced by the smartphone. The noise still contained in the data 

adds up fairly fast, as the noise has a non-zero mean, which continuously adds to the velocity 

integration and distance integration. 

01 if (timeCount == 20) {  //1s passed 

02  measuredTime += 1;  //after 5s update on server 

03  timeCount = 0;      //reset counter 

04 } 

05 if (measuredTime == 6) {    //after 5s (6 as we start from 1) 

06  frequencyReal = (frequency * 60) / (measuredTime - 1); 

07  measuredTime = 1;       //reset time count 

08 } 

09 

10 //Data gets sent over the socket to the server 

11 //----------------------------------------------------- 

12 try { 

13  socket.emit("SensorData", new JSONObject().put("time", 

time).put("push", z)); 

14  socket.emit("AdditionalInformation", new 

JSONObject().put("freq", frequencyReal).put("dist", 

distanceDiff).put("timeMeasure", measuredTime)); 

15 } catch (JSONException e) { 

16  e.printStackTrace(); 

17 } 

Listing 7: Time dependent transmission of the sensor values. 
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4.2.2 Experimental App: Re-calibration, Speed & Magnitude 
In contrast to the algorithm approach described previously, which deals with the double 

integration and some mechanics to filter the raw data, the following algorithm is based on the 

speed and the magnitude of the acceleration values. This means, no double integration is 

performed, which should theoretically at least reduce the possible errors, though the raw 

values of the accelerometer are still very noisy and drift away. 

It is important to mention, that speed in this context does not mean the actual physical speed, 

which can be calculated by integrating the acceleration values, but rather the speed, that is 

produced between two accelerations, once the device is shaken. Basically this algorithm 

approach is a simple shake gesture detector, but much more adapted to the current 

reanimation problem. The idea behind this application is, that if the reanimating person is 

pushing the phone as hard as he or she can, the speed or the acceleration will drastically 

increase. This increase in acceleration between two measured acceleration values can 

indicate either a push or release with the phone. Of course by using this method, it is 

impossible to make a point about the distance travelled with the phone, but the major idea 

was to find the right frequency. If the reanimation guidelines were ranked in a ranking system, 

the right frequency would take the 1st place. Therefore, the major focus was on finding the 

right frequency for this approach and only count it once the reanimating person pushes hard 

enough. So according to numerous primary tests with the application and calibration of the 

used testing device, a Nexus 5, it was possible to develop at least another way for detecting 

not the depth of the reanimation, but maybe the frequency. 

In order to measure the power of the shake, not only two values could be used, as the 

accelerometer sensor reads much too often and maybe the user is still pushing further, but 

the calculation already thinks that this is the maximum. If only the absolute difference between 

two acceleration values (at two timestamps) were taken, a local maximum could be reached 

and a global one neglected, as maybe the user is pushing further.  

 

The Figure 29 above shows schematically the acceleration along the x-axis with time and the 

local maximum and global maximum. Of course, the same applies to the negative direction of 

the acceleration values (local and global minimum). 

So the speciality of this algorithm implementation is the recalibration of the sensor or the 

values and the usage of an average measurement of 𝑛 measured acceleration values.  

Figure 29: Maxima of acceleration function for one axis. 
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Each metric distance between two acceleration points at time 𝑡𝑖 − 𝑡𝑖−1 is calculated 

and saved into an array. After 𝑛 of those metric distances have been collected, the average 

of the sum is formed and compared to a pre-defined threshold. If the value exceeds the 

threshold, the push (which is represented by the 𝑛 values in the array) is counted. The 

threshold and the number of averaged values can be adjusted programmatically, but were 

chosen due to primary research and tests with a reanimation phantom and two professional 

paramedics. According to these tests, the values have been adjusted for the given 

smartphone. First the major fixed parameters are shown again, which have not changed since 

the last application but are necessary. 

 

Fixed parameters: 

IP = “91.219.68.209” This stands for the address of the server at the university 

of St. Pölten. 

Port = “80” With this variable the port of the server is described. 

TYPE_LINEAR_ACCELEROM

ETER 

Upon using this parameter, it is possible to directly get 

the filtered raw values from the accelerometer. This 

sensor is a fused sensor, which means, it consists of 

several other sensors in order to process out the drift and 

noise. By using this sensor, the minimum operating 

system version must be higher, as it is a newer 

implementation. 

SENSOR_DELAY_FASTEST Again this parameter is used, as the reading should be 

as fast as possible and the timestamps are controlled 

programmatically. Though 0ms is suggested to the 

operating system, it will not directly perform the sampling 

at this time. 

 

Special properties: 

pushThres = 1.2 This value indicates the minimum force, that has to be 

applied to the phone in order to detect the shake or 

gesture as a push. The value starts at a pre-defined 

number (according to primary research) and gets 

dynamically adjusted during the application runtime. 

After a specific amount of measurements have been 

taken, the value is recalibrated dynamically during the 

runtime. The intention behind this recalibration is to 

adjust the calculation algorithm to the user, as some 

users may push harder or weaker than others. 

timeThres = 500 With this value it is possible to adjust the amount of time 

the user has to perform the push. The default is set to 

500ms, but can be adjusted before the application is 

launched. 

magnitudeThres = 5 With this threshold the other functionality of the algorithm 

is checked, because it was necessary to also include the 

general movement. So every time the user pushes 

harder than this value a parameter is counted up. This is 

used to detect if the user is moving the phone in any way.  
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Also new in this application and algorithm is the menu, which allows the user to adjust 

the parameters of the calculation prior to the launch. After the application has been launched, 

it is impossible to change the parameters until finishing it. Of course the menu is not intended 

to be used by a layperson, but it allows far more freedom while testing the application. 

 

 

Figure 30 above shows the general application menu, which is still the same as in the normal 

application, but also has a specific submenu, that allows more custimoization for the user. The 

menu or input fields always show the current value as a hint. By switching the last menu point 

it is possible to control wheter the recalibartion of the push threshold should happen or not. 

 

Code: 

Again the following code parts are taken out of the full applciation and need the whole 

environment to function appropriately. The major parameters are described seperately as well 

as the arrays that are important. In the first code snippet the recalibration function is presented. 

 

Figure 30: Application menu and algorithm calibration submenu. 

01 private void recalibrateCalculation(ArrayList<Float> list) { 

02  float sum = 0.0f; 

03  float mean = 0.0f; 

04  int count = 0; 

05  int countThres = 0; 

06 

07  for(Float f : list) { 

08      sum += f; 

09  } 

10  mean = sum/list.size(); 

12  for(int i = 0; i < list.size(); i++) { 

13      if(list.get(i) > mean) { 

14          count++;    //Count amount greater mean 

15      } 

16      if(list.get(i) > pushThres) { 

17          countThres++;   //Count amount greater threshold 

18      } 

19  } 

21  if(count + list.size * 0.1 > countThres) { 

22      pushThres = mean + 0.2;     //Adjust threshold 

23  }  

24 } 

Listing 8: Recalibration method for the pushes. 
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Listing 8 above shows the recalibration method for the algorithm, which needs a list of 

values, where the new mean value is calculated from. The list of values contains values, where 

each value stands for the average of 𝑛 acceleration distances (difference between an actual 

and a previous one). The list consists for example of 200 values, which have been calculated 

over the past few seconds. First the function calculates the sum of all values and later the 

mean, before proceeding in the lines 12 to 18 with the counting part. The first if-statement 

counts the number of values, that are greater than the mean value of all values. The second 

if-statement counts the number of values, which are greater than the actual defined push 

threshold. Later those two numbers are compared in line 21, where a little offset is added to 

the first count of values in order to neglect the standard derivation. If the statement evaluates 

to a true value, the new push threshold is adjusted by adding an offset to the pre-calculated 

mean of values. 

The intention is to dynamically react to the pushing behaviour of the reanimating person. For 

example, the person is reanimating not hard enough, but the frequency would be good and 

the algorithm says the frequency is not right as the push is not deep enough, it would 

sophisticate the result. Even if the person is not pushing hard enough, the frequency, if it is 

right, is often half the battle. Sometimes the people also change their pushing habit during the 

reanimation, as they push one minute harder and the other minute softer. In order to detect 

the movement in any situation the idea is to adjust the values on the run. The following code 

shows the implementation of the algorithm and the usage in the running program. 

 

 

01 public void onSensorChanged(SensorEvent event) { 

02  if (started) { 

03      time = System.currentTimeMillis();  //Timestamp of event 

04 

05      if((time - timeOld) > getNumberOfMeasures()) { 

06          timeOld = time;     //Old time update 

07          timeCount++;        //Counting to seconds 

08 

09          x = event.values[0]; 

10          y = event.values[1]; 

11          z = event.values[2]; 

12 

13          if(valueStack.size() > (int)getNumberOfMeasures()) { 

14              valueStack.remove(0);   //Remove old ones 

15          } 

16 

17          float speed = Math.abs((x + y + z) - (xOld + yOld + 

zOld)); 

18          valueStack.add(speed); 

19 

20          xOld = x; 

21          yOld = y; 

22          zOld = z; 

23 

24          float sumOfValues = 0.0f;   //Store sum of speed 

25          float avgOfValues;  //Store average of speed 

… 

Listing 9: Major part of the algorithm is described. 
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In Listing 9 above the major part of the algorithm is shown, without the time counting that 

happens past line 44. As already explained in the previous application example, the time count 

is just used in order get an approximate measurement about the running time of the application 

and the algorithm and to update the information on the website once every few seconds. Also 

the second if clause, where the time difference is calculated, is nothing new. This is an 

approach to overcome the vague sampling rate of the sensor and the time stamps.  

As this application uses the linear accelerometer sensor from android, theoretically no filtering 

is required, as the values should be near zero and the gravity is factored out. On line 17 the 

speed is calculated, which is the absolute distance between the actual acceleration values 

and the previous acceleration values on all three axes. Then those values are added to an 

Arraylist called valueStack, which can be adjusted by the time threshold (the time in 

milliseconds to perform a shake). So if this time threshold is set to 500ms, the array has the 

size of five, as the value is divided by 100. The division results from the fact, that every 100ms 

a value is an appropriate way to get enough information. 

At the beginning the array contains only one value and slowly builds up to the maximum size, 

but anyway the average is calculated in line 30. In the beginning the not totally filled array can 

be neglected, as it rapidly fills up to the maximum amount and always clears unnecessary or 

old values. Only the latest 𝑛 values are viewed, where 𝑛 again depends on the time threshold. 

After the average is calculated, the threshold may be adjusted, if the requirements on line 33 

are met. The first requirement is a way to perform the recalibration only every 5s, as the user 

could unwittingly change his pushing behaviour and not stay the same over time. This is simply 

a way to ensure, that the recalibration is eligible along the other requirement, that checks, if it 

is anyway wanted. Once the recalibration is performed, the recalibration stack is cleared in 

order to collect another 200 values. The condition of minimum 200 values is not really 

necessary, as the sensor collects far more values over five seconds but implemented, in order 

to ensure, that at least 200 values are used, if somehow the sensor collects less. 

… 

26 

27          for(float f : valueStack) { 

28              sumOfValues = (sumOfValues + f);    //Find sum 

29          } 

30          avgOfValues = sumOfValues / 

(int)getNumberOfMeasures(); 

31          averageStack.add(avgOfValues); 

32 

33          if(measuredTime % 5 == 0 && recalibrateCheck == 1) { 

34              if(averageStack.size() > 200) { 

35                  recalibrateCalculation(averageStack); 

36                  averageStack.clear(); 

37              } 

38          } 

39 

40          if(avgOfValues >= pushThres) { 

41              frequencyReal++;    //Count up the frequency 

42              valueStack.clear(); 

43          } 

44      ... 
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After a possible recalibration the average over the valueStack is compared to the 

pushThres, which indicates the minimum pushing power the user has to have. If the power 

or push was hard enough, a variable is counted up, that stands for the frequency. The rest of 

the code is equal to the previously described application, as again here the frequency is 

extrapolated to 60s and it is checked, if the user is reanimating in the optimal frequency of 

100 pushes per minute. 

 

Values: 

This part also only slightly differentiates from the transmission of the previous application. For 

the time, the code implements again a simple if-statement, which counts up to one second 

total. The counting statement is again adjusted to the sampling rate of the sensor, though still 

only an approximation, as the sensor is not performing as often as wanted. In Listing 10 below 

the values for the transmission are shown, which are passed to the server as two JSON 

objects. The separation in two JSON objects is done, as the second one, with the Tag 

“AdditionalInformation” only needs to be sent once the seconds are counted up and not every 

time a new value arrives. The first one is sent every time a value arrives in order to visualize 

the movement towards and backwards the reanimating person. 

 

 

Problem description: 

Generally, this algorithm was more an idea or other way to calculate the frequency based on 

the acceleration and not the distance, as the distance calculation is nearly impossible with the 

given tools (just a low cost smartphone accelerometer sensor). The real problem with this 

algorithm approach is, that the acceleration is changing over the reanimation time rapidly, as 

the user performs the reanimation either in a harder, faster, slower or weaker way and the 

difference or distinction between those is very difficult. Although the recalibration is a good 

idea, the function could be much more refined, as the values are often changing much faster 

than the recalibration happens. 

 

Future ideas: 

For the future only the gained knowledge about the distance between two acceleration values 

will be necessary and useful as well as the recalibration. The attempt is though not really 

expedient and was not further followed, as the results often varied much more and were not 

as adequate as wanted. The main result was, that the best idea for further applications is, to 

concentrate more on the right frequency, based on the acceleration readings. 

01 ... Performing time count 

02  

03 try { 

04  socket.emit("SensorData", new JSONObject().put("time", 

time).put("z", z)); 

05  socket.emit("AdditionalInformation", new 

JSONObject().put("freqR", frequencyReal).put("timeMeasure", 

measuredTime)); 

06 } catch (JSONException e) { 

07  e.printStackTrace(); 

08 } 

09  

10 ... Closing of function body 

Listing 10: Transmission of the acquired data. 
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4.2.3 Final App: Peak detection & frequency 
This application is one of the final results of this thesis as well as the corresponding developed 

algorithm. The application itself is used during the studies with laypersons and trained 

professionals and visualizes the frequency of the reanimation on the corresponding 

LifeStream website. After 15 seconds (an adequate update time) the frequency on the website 

is updated based on the average reanimation frequency during this time. The frequency is 

calculated for these 15 seconds or any other interval on the smartphone and later transmitted 

to the server along with other values. The visualization of this algorithm is also explained here, 

as this algorithm is used during user studies.  

First and foremost, the application idea and algorithm is explained, which stands behind the 

application. Starting with the required minimum operating system. This application requires at 

least Android 4.4 in order to make use of the android linear accelerometer, which is used in 

order to work with already optimized values (regarding the noise and drift). Furthermore, the 

application requires at least Android 6.0 to use the Toolbar. If not, the menu will not appear 

as it should, or behaves differently, which is not that harmful, as the user anyway normally 

has no time during a time critical situation, to tweak the algorithm with the menu. 

For the calculation the linear acceleration sensor is used, which was already processed out 

the force of gravity from the raw values. This algorithm is fairly simple and not fully finished, 

concerning the distance detection, but fully functional in order to find the right frequency, which 

is sometimes even more important. The optimal frequency of 100 pushes per minute should 

theoretically be achieved by pushing always at least five centimetres into the chest of the 

victim. Often enough though, the reanimating person is not hitting those five centimetres and 

pushes either too hard or too weak, but still in the right frequency, which is also already very 

effective. As the distance detection with the given sensor and technology is not really possible 

the approach with frequency seemed more promising as well as an approximation of the 

distance based on the z-axis acceleration. As the performed reanimation of the user normally 

changes over time, especially when the power ceases, the frequency detection is very difficult. 

The requirement to the algorithm must be to detect hard pushes as well as faint pushes. 

Therefore, some kind of peak detection is implemented. According to previous studies and a 

lot of acceleration data logging and plotting an idea arose. Once the acceleration values or 

signal traverse the zero line, a change in acceleration happens and a peak can be detected.  

Figure 31: Peak detection and minimum threshold (along z-axis). 
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So no matter how weak or hard the user pushes, the peak can be detected by its zero-

line crossing and change of acceleration, of course with a minimal threshold of applied 

acceleration. As Figure 31 on the previous pages shows, each peak can be detected 

independently, of the applied force. The grey box indicates an interval, where the acceleration 

is too small and the threshold is not hit by the curve. These small peaks are not concerned 

during the algorithm. Again the most important parameters and properties are described. 

 

Fixed parameters: 

IP = “91.219.68.209” Again this address represents the address of the server 

at the university of St. Pölten. The web address is 

http://lifestream.fhstp.ac.at  

Port = “80” With this variable the port of the server is described. Of 

course, this could be changed into any other port that is 

available. 

TYPE_LINEAR_ACCELEROM

ETER 

The fused sensor is used again, as he processes the 

gravity out and filters the raw acceleration signal very 

well. 

SENSOR_DELAY_GAME This time a slightly slower sampling rate is chosen, as 

the peaks should be detected as well as possible. The 

delay is defined for 20.000 microseconds, but again this 

is only a suggestion to the android operating system. The 

time counting if-statement during the code is used to time 

the value processing somehow. 

 

Special properties: 

pushThres = 1.0 This value indicates the minimum force that has to be 

applied to the phone in order to detect the peak of the 

acceleration signal. The value starts at a pre-defined 

number (according to primary research) and can be 

adjusted by the application menu.  

timeThres = 100 During this algorithm or application this variable is used 

to check, whether 100ms passed (as 100 is defined) or 

not, before further calculations are performed. 

magnitudeThres = 5 With this threshold the other functionality of the algorithm 

is checked, because it was necessary to also include the 

general movement. So every time the user pushes 

harder than this value, a parameter is counted up. This 

is used to detect, if the user is moving the phone in any 

way.  

negativeThres = -0.5 This special variable is used to detect or mark the point 

when the acceleration changes into negative direction. 

Upon reaching a value of -0.5 or smaller than this the 

direction change of the acceleration signal can be 

detected. 

As already mentioned, this application also implements the menu in order to fine tune the 

algorithm. The menu is slightly changed in relation to the other menus, but generally equal. 

http://lifestream.fhstp.ac.at/
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Figure 32 shows the menu for the application, which has basically stayed the same. Only the 

submenu has changed and gives new customization options. The main functionality of 

unlocking the buttons and eventually configure the IP address still stays the same. 

 

Code: 

The code parts below are taken out of the main application and show the peak detection as 

well as the rest of the code and the time calculation in more detail as it is used for the server 

or website. The most important part this time is the self-developed peak detection, which is 

taken out and described separately and in more detail prior to the rest of the algorithm.  

 

Listing 11 above shows from line 17 to 35 the peak detection, that is taken out of the whole 

code in order to explain it in a more detailed way and previous to the rest. Starting with line 

18, first the time is checked, if already 15 seconds have passed. 

Figure 32: Acceleration menu and submenu with options. 

17  //Perform peak detection 

18  if(measuredTime % 15 == 0) { 

19      minus = true; 

20      for (int i = 1; i < calcValueStack.size() - 1; i++) { 

21          if (calcValueStack.get(i) < negativeThres) { 

22              minus = true; 

23          } 

24          if (calcValueStack.get(i - 1) < 

calcValueStack.get(i)) { 

25              if (calcValueStack.get(i) > calcValueStack.get(i 

+ 1)) { 

26                  if (calcValueStack.get(i) > pushThres && 

minus == true) { 

27                      frequencyReal++; 

28                      minus = false; 

29                  } 

30              } 

31          } 

32 

33      } 

34      calcValueStack.clear(); 

35  } 

Listing 11: Peak detection algorithm. 
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The amount of 15 is chosen, as it seems appropriate for the website to show the 

updated frequency. So only if this amount of time passed, the collected values are taken and 

the peaks are counted within this interval. A Boolean variable minus is used in order to 

determine whether the acceleration crossed the zero line and goes into the negative direction 

or not. Only the positive peaks are interesting, as those are the result of pushing the 

smartphone down, if it is lying flat on the chest of a victim. During the for-loop, where all values 

are passed, each is checked on line 21, if it is smaller than the negative threshold. Once value 

is found that is smaller than the negative threshold, the Boolean variable minus is set to true 

again, which indicates a change or acceleration in the negative direction.  

The next three if-statements are capsuled and the first one starting at line 24 checks if the 

previous value is smaller than the current one. If that is true, the second if-statement inside 

the first one is evaluated, which checks, if the current value is greater than the next one. The 

last if-statement inside the second one checks, if the value is greater than the push threshold 

and then increments a variable, that counts the frequency or peak, because once inside the 

third if-statement, a peak is found. After the for-loop finishes the stack of values is cleared and 

the values are dumped. So after the first 15 seconds the algorithm counts how many peaks 

have been produced, independently on how deep or hard they have been. 

The next code parts show the overall implementation and usage of the above described peak 

detection during or inside the onSensorChanged method. 

 

01 public void onSensorChanged(SensorEvent event) { 

02  if (started) { 

03      time = System.currentTimeMillis();  //Current time 

04 

05      if((time - timeOld) > timeThres) {  //Control time 

06          timeOld = time; //Old time is new one 

07          timeCount++;    //Counting to seconds 

08 

09          float[] values = event.values;  //Highpass filter 

10          float[] filteredValues = 

DataManipulation.highPass(values[0], values[1], values[2], 0.8); 

11 

12          x = filteredValues[0]; 

13          y = filteredValues[1]; 

14          z = filteredValues[2]; 

15          calcValueStack.add(z);  //Add z value only 

16 

17 - 35     //PEAK DETECTION 

36 

37          magnitude = (float) Math.sqrt((x*x) + (y*y)+ (z*z));    

38          double accelDiff = Math.abs(magnitude - 

magnitudeOld);  //Acceleration change 

39          magnitudeOld = magnitude;   //Old is new one 

40 

41          if(!sensorInitialized) {    //If sensor not used 

42              magnitudeOld = magnitude;   //Last magnitude is 

old one 

43              sensorInitialized = true; 

... 

Listing 12: Sensor method with peak detection and time measurement. 
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Listing 12 above and on the previous page is not much different than the previously described 

methods, but combines a lot of features. First after the initial check if the application is started, 

the values are copied into an array and filtered with the high pass filter on line ten. After they 

have been filtered and saved into the respective variables x, y and z, the z-value is used for 

the peak detection. Therefore, the value is saved in an Arraylist called calcValueStack, 

which dynamically grows over time and includes the acceleration values along the z-axis. The 

z-axis is used, as it is important to get information about the negative and positive acceleration. 

By using the magnitude, the negative values would be removed by the Pythagorean theorem.  

After the peak detection is performed, the magnitude is calculated and used to determine the 

absolute distance between the current magnitude and the previous one. Although this 

information is not really used on the website, it is still important in order to count any movement 

and see the difference between the real peak detection along the z-axis and the overall 

movement of the phone. 

 

From line 51 to 59 the time is calculated again by using the sampling rate of the phone and 

some counting variables. During this application and the studies, a Nexus 5x was used with 

the newest android operating system. Prior researches with the phone had shown, that the 

sampling frequency is around 20ms. As a result of these 20ms sampling frequency the first if-

statement on line 51 checks whether the timeCount is 50 or not, because 50 times 20 results 

in 1000ms or one second. If one second passed, another variable is increased, the 

measuredTime, that counts the seconds and the time counter is rest to zero. The second if-

statement on line 55 checks, if the variable measuredTime has reached a value of 16 (not 

15, as the variable starts to count from one). The variable needs to start from one, as the 

server displays the time and uses it for further calculations. If the variable started from zero, 

the server and the website would produce an error, as there some calculations with the time 

are performed. Also the frequency is reset to zero, which is used during the magnitude 

difference check and more important, the frequencyReal is reset to zero. During the next 

15s the frequency, that has been calculated with the peak detection, is shown on the website 

and updates only after the next calculation has been performed and sent to the server. 

44          } else {    //If sensor is used 

45          if(accelDiff > magnitudeThres)  //If diff greater  

46          { 

47              frequency += 1; //Count every movement 

48          } 

49 

50          //Count time dependent on smartphone 

51          if (timeCount == 50) {  //Count 1s 

52              measuredTime += 1; 

53              timeCount = 0; 

54          } 

55          if(measuredTime == 16) {    //Reset after 15 seconds  

56              measuredTime = 1; 

57              frequencyReal = 0; 

58              frequency = 0; 

59          } 

60                   

61      ... Transmission code 
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Values: 

For the transmission the same structure is used as in the described algorithms previously, 

only the transmitted values have changed. The transmission includes a simple calculation this 

time in order to extrapolate the frequency to 60s. Therefore, the counted frequency is simply 

multiplied by four in order to count up to one minute. The rest of the extrapolation is performed 

on the website. 

 

 

Problem description: 

Once again this algorithm is of course not fully perfect, but at least stable enough along the 

rest of the application to work for ten minutes continuously or more. That is already an amazing 

outcome and the user studies, that have been performed with a layperson, have shown, that 

the algorithm works even compared to a professional reanimation phantom that is used to 

calculate the chest compression and frequency (see [11], [12]). The major problem is still the 

noisy signal and the sensor as well as the smartphone. The time count is only estimated and 

not totally equal to the real time and the sampling frequency often behaves differently from 

phone to phone. Anyway the peak detection works, as intended, even with a changing 

reanimation behaviour during the ten minutes. One problem though still is the repositioning of 

the phone, as some of the reanimating persons have to adjust it, if the smartphone slides 

away during the reanimation. Though, only the z-axis is taken for the calculation and the 

horizontal or vertical movement should not harm the peak detection, the repositioning still 

produces errors. These errors can result in strange acceleration signals and therefore in a 

wrong frequency. 

 

Future ideas: 

Although this algorithm is finished or nearly finished for the frequency detection the distance 

detection is still problematic. The final insight on the ideas or future work is given in Chapter 

5 of this thesis, but the next step would be to find the distance. As the distance calculation 

only works for a short period of time and the error drifts away exponentially, the idea is to 

perform the distance calculation (by double integrating the acceleration signal) only every 15 

seconds for the amount of values that are currently used during the peak detection.  

Somehow a fusion of the first described application during this thesis and this one by using 

the filters and the peak detection and only calculate the distance during the next 15 seconds 

or any other time that is adjusted in the code.  

The approach was not pursued further, as the project already finished by performing the user 

tests and by showing the current results to the project partners. A future collaboration could 

of course include the implementation of the described idea and the appropriate testing. 

 

01 ... Performing time count     

02 try { 

03 socket.emit("SensorData", new JSONObject().put("time", 

time).put("magnitude", z)); 

04 socket.emit("AdditionalInformation", new 

JSONObject().put("freq", frequency).put("freqR", 

frequencyReal*4).put("timeMeasure", measuredTime)); 

05 } catch (JSONException e) { 

06 e.printStackTrace(); 

07 } 

08 ... Closing of function body 

Listing 13: Data transmission with mulitplied frequency. 
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Additional information: 

This time the visualization on the website is presented as well, as the results of the algorithm 

are very promising and used during a test with laypersons. The corresponding LifeStream 

website shows the reanimation curve, which is the push along the z-axis (later replaced by 

the distance) to make a point about the depth somehow. The frequency is shown to the right 

in the information box and has three colour codes. 

 

Figure 33: LifeStream website with too high frequency over the last 15 seconds. 

Figure 34: LifeStream website with not so good frequency over last 15 seconds. 
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The colour codes for the frequency are the following (based on the range of the frequency): 

 Red = Indicates a very bad frequency (all under 90 or above 130) 

 Yellow = Indicates an average frequency (from 90 to 100 & 120 to 130 pushes) 

 Green = Indicates an optimal frequency (from 100 to 120 pushes) 

 

In the graph the z-axis is visualized, as the movement with the smartphone happens along 

this axis. By visualizing it, it is possible to give at least a hint about the reached depth or 

pressure that is applied to the smartphone. 

 

4.2.4 Further Possible Methods 
Additionally, to the previous described algorithms a few other possible solutions are available, 

but not all implemented, either due to lack of time or chance of success. For the sake of 

completeness, they shall be mentioned here or described shortly: 

 

 Re-zeroing 

 The idea behind this method is fairly simple but effective, if the sensor raw values 

 contain any kind of offset, that is affecting the application. Before performing further 

 calculations with the sensor values, the recalibration factor or array is calculated. 

 This is simply done by measuring 𝑁 values, store them in an array and find the mean 

 values. So in practice for example 50 acceleration values of x, y, and z are stored in 

 an array and the mean x, y and z-values are calculated. Then, after new values have 

 been read, the mean values are subtracted each time from the new values.  

 By using this method, an offset can be removed from the sensor values and each 

 value is technically re-zeroed. This method was implemented in one of the 

 applications, but did not remove the drift or errors efficiently enough. 

 

Figure 35: LifeStream website with nearly perfect frequency. 
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 Kalman filtering 

 By using this filter excellent signal processing results can be achieved, but it is very 

 complicated to implement and not suitable for a simple and fast smartphone 

 application. The algorithm takes noisy measurements, some predictions on how the

 measurement’s true value is behaving and some forces, that are causing the system 

 to change. The Kalman filter estimates a process by using feedback control systems. 

 It estimates the process state at some point of time and then obtains feedback in the 

 form of noisy measurements. For the algorithm to function appropriately two kinds of 

 equations are necessary. The time update measurements, which can also be 

 described as the predictor equations and the measurement update equations or 

 corrector equations. In the actual implementation of the filter usually the 

 measurement noise covariance is measured before the filter is applied. Also the 

 process noise must be measured prior to the filtering. 

 

 This filter type is extremely flexible and can be used to smooth high-frequency noise 

 or to isolate a periodic signal. If functionality beyond simple smoothing and simple 

 high-pass filtering is needed, a Kalman filter will give the best results. An actual 

 implementation of th filter though is not really possible with the given software and 

 hardware, as the smartphone needs the processing time for the calculation and the 

 data transmission. Also two kinds of equations are necessary and two inputs, but the 

 smartphone produces roughly only one type of input – the acceleration values. 

 The filter operates by producing a statistically optimal estimate of the system state 

 based on the taken measurements. In order to achieve this the system needs to know 

 the noise of the input to the filter and also the noise of the system itself, which is 

 technically very sophisticated [45]. 

 

 Verlet integration 

 Another possible solution for the positioning could be the Verlet method to integrate 

 the devices acceleration to a position. It is a numerical method, that is used to 

 integrate Newton’s equations of motion in order to find the position out of the 

 acceleration. Often it is used to calculate trajectories of particles in video games or 

 movement simulations. A much more detailed information about the method 

 can be found on  the following two references: “Computer Experiments on 

 Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules” [46] 

 and “A Simple Time-Corrected Verlet Integration Method” [47]. 

 Although the method seems very complex, the functionality and stability is great, 

 compared to other algorithms like the Euler Backward Propagation. The major 

 problem with this algorithm and why it is not used, is explained in the following. 

  

 There are two criteria to make the verlet algorithm exact. One is the constant 

 acceleration, which is not present in this particular android application, as the 

 acceleration is always changing (even from plus to minus) and the other one is even 

 more problematic for the android implementation, because it is the constant 

 timestamp. As already mentioned several times, the android operating system is not 

 producing real values or usable values by measuring the sampling frequency. Often 

 the values are changing depending on the current running tasks or other things the 

 operating system has to perform. Of course there are workarounds present for the 

 presented problems, like the time corrected verlet integration, but still not suitable for 

 the current application or problem of this thesis, as acceleration is changing 

 constantly as well as the sampling rate.  



St. Pölten University of Applied Sciences 
 
 
 
 
 

70 
 

5 Evaluation of Chest compression depth 
algorithm Approaches for the Mobile First 
Responder Client  

In this chapter the previously shown applications of Chapter 4 are combined into a final result 

and evaluation of the performed work. During the work on the project “LifeStream” numerous 

applications were developed with different algorithms and implementations of those. Not every 

algorithm is functional and works, but the final results have shown, that it is still possible to 

make a point about the frequency somehow. Also the distance detection is theoretically 

possible, but generally not achievable with the defined resources and technologies. More 

insight in the problems and future plans is given in Chapter 6, which deals with the limitations 

and discusses more details. 

 

5.1 Aim of this Investigation 

Once again the aim of this thesis was to find a possible solution for detecting the chest 

compression depth and chest compression rate by using a low cost smartphone sensor – the 

accelerometer. Upon detecting or calculating the frequency and the depth with the 

smartphone, the information is transmitted to the server (this happens nearly continuously) 

and from there redirected to the visualization website.  

The information than can be used by the professional or dispatcher, who views the website to 

guide the reanimating layperson through the reanimation. Of course nowadays the 

reanimations are often guided by the dispatcher (which follows a global guideline), but only 

with audio feedback and not visually. The reanimating person is led to the right frequency by 

a simple counting scheme, that is recited by the dispatcher. The dispatcher has the possibility 

to lead the reanimating person into the right direction but, is not able to control the depth or 

frequency visually. Often enough people are counting in another frequency than they push, 

e.g. they count more slowly than they actual move their hands. By using the website, it is 

possible to give visual feedback about the frequency and maybe in future implementations 

also about the depth. 

 

5.2 Description of Method of this Examination 

The following subitem describes the methods used during the problem examination as well as 

the methods to test the results produced during the algorithm development. Also the previous 

made milestone plan is discussed and the general field of research. As a reminder the thesis 

mainly deals with the algorithm for CCR and CCD detection as well as the transmission of the 

gathered information and not directly with the overall project and its realization. 

 

5.2.1 Field of Research 
The overall project is situated in the Human Computer Interaction (HCI) field of research, or 

more specifically in the medical application sector and human dispatch life support. The 

project combines two great fields of research, the technology or software development and 

the medical sector or dispatch life support. A combination of these two research fields lead to 

the fantastic project “LifeStream”, which tries to combine already present technology, that is 

easy accessible to everyone and medical information, in order to enhance the dispatch life 

support. As the medical field of research is somehow precarious in terms of application 

development, the application is defined as gadget for dispatch life support and not as medical 

application. 
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5.2.2 Course of time 
For the thesis, as well as for the project, a timeframe of two years was planned including its 

development and the contacting of the project members. Mostly the time schedule was 

followed appropriately and nearly every milestone was achieved. In the following Table 3 the 

project planning is shown, as well as an annotation to each milestone. 

 
Table 3: Time schedule for the project. 

Estimated Date Milestone Annotation 

9th November 2015 -) finished research 

-) basic algorithm   concept 

-) further development of 

application 

At this point the milestone was 

already achieved and some 

algorithms had been 

implemented. 

30th November 2015 -) first implementation of 

algorithm 

-) visualization and 

transmission of information 

to the website 

Here already some other 

algorithms had been tested and 

the visualization worked as well. 

Still in time according to the time 

schedule. 

21st December 2015 -) validation of the 

algorithm 

-) further research 

-) optimizing data 

transmission 

-) writing down results 

Also this milestone was still in 

time as a lot of testing was 

performed, but the algorithm was 

not that useful and was dropped 

later on. 

18th January 2016 -) finalization of data 

transmission & algorithm 

-) implementation finished 

-) writing on thesis 

Here the time plan was already 

complicated, as the writing of the 

thesis started later and the 

implementation continued. 

22nd February 2016 -) thesis finalization 

-) final tests and validation 

-) visualizing of data 

Also this timestamp could not be 

met, as the algorithms had to be 

further developed. 

 

Of course the previously made time schedule was not totally achieved, as some unexpected 

problems occurred during the development or some more insight was gained. For example, 

the previously developed or found algorithm, that is based on the double integration, did not 

work as intended, especially with the low cost accelerometer sensor in smartphones.  

Therefore, also the tests of the algorithms retroverted back to March or April, where the first 

functional algorithm was found for frequency detection and also used during the user tests.  

 

5.3 Final Application Results  

In this subsection the final results of the applications, as well as the algorithm development, 

are pooled. There are numerous applications that have been developed and no less 

algorithms that have been tested or viewed, but not all lead to a meaningful result. All in all, 

the detection of the chest compression rate is somehow possible with the given hardware and 

surroundings, but the chest compression depth detection is far more complicated and nearly 

impossible with the accelerometer sensor of the smartphone. On the next pages Table 4 lists 

a short description of the used algorithm, the problems that occurred and why it was not that 

useful and finally the results. Not all applications are listed in the table and also not all are 

described in more detail in this thesis (except the good and functional ones). 
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Table 4: Results of developed applications and methods. 

 Application: Simple Double Integration 

Algorithm/Method 

Simple double integration of the acceleration values. Based on the 

formulas from 4.1.1, where the general idea is presented. 

The displacement (change in position with view on the direct way 

between two points) should be gathered by simply integrating the 

acceleration values twice. The used sensor was the basic 

accelerometer. 

Problems 

Various problems occurred during the calculation, like the drift of the 

sensor and the general noise that is included in the data.  

Although even a basic filter has been applied later on, the noise of 

the raw values still had a non-zero mean. 

Also the time measurement and sampling frequency is problematic. 

Results 

 Accelerometers in smartphones are noisy and drift. 

 Sampling rate is hard to configure at fixed time stamps. 

 Filtering is necessary (noise and drift). 

 Simple double integration is not possible. 

 No statement about chest compression rate or depth 

possible. 

 

Application 2: Double Integration with total acceleration 

Algorithm/Method 

Double integration with total acceleration taken into account and 

further filtering by using the high pass filter primary and later a low 

pass filter in order to reduce the noise and drift of the raw values. 

The sensor used is till the basic accelerometer without any sensor 

fusion. For a more detailed description view 4.2.1. 

Problems 

As already discovered in the previous application, the sensors work 

not very precisely and still often contain a lot of noise and drift, that 

accumulates up during the integration over time. 

Also the time factor is problematic for the acceleration, as the 

smartphone produces no continuous time stamps, that have the 

same distance.  

Results 

 The basic accelerometer sensor is not very useful. 

 The fused linear accelerometer should be used, that 

already contains zeroed values in idle state. 

 Double integration works, but not over a longer amount of 

time, as the values and time are not stable enough. 

 

Application 3: Magnitude Threshold 

Algorithm/Method 

This application uses a completely different approach in order to 

detect the frequency of the pushes. The magnitude of the 

acceleration in x, y, z-axis is calculated and checked, whether a 

threshold is passed or not. 

Problems 

Although the linear acceleration was used, the idea was not very 

helpful, as the magnitude does not give a very good statement about 

the movement. 

Results 

 Movement detection with magnitude is possible, but not 

good. 

 The linear accelerometer is better for further development. 
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Application 4: Metric distance between acceleration 

Algorithm/Method 

Based on the previous application three, the idea here was to 

measure the metric distance between the acceleration signals and 

make a point about the frequency. The idea also involves the 

accumulation of the values into a set of values and to perform the 

calculation later. This should reduce the outliers, as the arithmetic 

middle of the value set is taken for the calculation.  

Once the acceleration between two points is calculated and the 

arithmetic middle of the value set, the result is compared to a 

predefined threshold. The threshold of a minimum acceleration or 

speed can be adjusted dynamically based on the reanimation 

behaviour of the reanimating person. For more information, see the 

following Chapter 4.2.2. 

Problems 

Problematic in this approach was the fact, that the values still were 

very noisy although the linear accelerometer was used. Also the idea 

of measuring the acceleration distance between two points is not that 

practical and only useful for frequency detection. 

Results 

 Accelerometers are not very handy especially for distance 

detection. 

 The frequency detection works already pretty well, but is 

not able to detect a change in frequency, once the strength 

of the push changes. 

 

Application 5: Final Version 

Algorithm/Method 

The final application, that is also used during the user tests and 

studies, implements some kind of peak detection. Each movement 

that is above a certain threshold is recognized, even if the strength 

of the pushes changes over time. 

The peaks are detected with a self-developed algorithm, that detects 

the change into the positive or negative direction of the acceleration 

signal. A detailed explanation is given in 4.2.3 Final app: Peak 

detection & frequency. 

Problems 

This algorithm also has to deal with the general problems like all the 

others. The accelerometer in the smartphone and the operating 

system generally are very unhandy and operate in a wayward 

manner. 

Once the sampling frequency is set, the operating system only takes 

it as suggestion and not directly as fixed value. Also the algorithm 

still lacks some further checks, as the accidental movement with the 

phone is also detected, but works for most of the cases. 

Results 

 The application detects the frequency very well and is 

nearly equal to a professional reanimation phantom that is 

used for training purpose. 

 Further investigation is necessary and it is possible to 

enhance the application by implementing the displacement 

detection. 

 Displacement always can be detected over a short amount 

of time (ideally only over the current value set). 
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6 Discussion and Conclusion 
The aim of this thesis was to show the made researches, discuss the LifeStream platform with 

the client and server architecture, show the design and development and of course find a 

possible implementation for chest compression rate and chest compression depth detection 

by using a low cost smartphone sensor – the accelerometer. Also the optimized transmission 

and server development, together with the visualization of the gathered information were part 

of this thesis, though even more important for the whole project. Ideally every layperson should 

be able to use the application and perform a guided cardiopulmonary resuscitation (CPR) with 

a better outcome for the patient. By using the developed application, the dispatcher, who 

instructs the layperson, is able to further guide him or her during the reanimation, as he gets 

continuous visual feedback about the current situation. Every smartphone nowadays is able 

to run applications that are based on integrated sensors and the accelerometer sensor is an 

old sensor, that is already available since the beginning of smartphones. By using this low 

cost sensor, it should be possible to spread the application around and make it usable for 

nearly everyone (also due to the simplicity of the app and the slim user interface). 

 

During the work on this thesis and the algorithms for CCR and CCD detection a lot of projects 

have been viewed and lots of tests were performed with the accelerometer. The tests have 

shown, that the accelerometer and especially the whole system, where it is integrated, are 

very different and often rely heavily on the hardware and the algorithm. Some algorithms are 

much easier to implement, but far not as accurate as others, who are more complex, but need 

much more data, hardware or information to work. As already mentioned in previous chapters, 

the accelerometer sensor is often enough not able to measure values without noise and drifts 

away after some time. The continuous error, which has a non-zero mean, adds up to further 

calculations that are performed with the raw values.  

After further researches visual inspection of acceleration data and various smartphones, a 

possible solution came up at least for this problem – the linear accelerometer. In contrast to 

the normal accelerometer, which measures the gravitational force along the z-axis (the axis 

where the phone is moved towards and away from the user), the liner accelerometer is a fused 

sensor, that consists of several other sensors in the smartphone. The linear accelerometer 

has already well optimized filter methods, which are far more accurate than self-implemented 

ones. For example, in some implementations the linear accelerometer consists of the normal 

accelerometer and the magnetometer and in other implementations a gyroscope for 

orientation detection is added. Common to all of them is the fact, that they still contain noise 

and drift, though the linear accelerometer filters out the gravitational force of the z-axis. 

Another problem is, that the linear accelerometer is only available in devices with the latest 

versions of Android version and not all smartphones contain the necessary sensors for the 

sensor fusion. 

 

Further tests revealed more problems with the acceleration values and the time stamps the 

sensor is producing. The main algorithm, which double integrates the acceleration signal for 

example, or some other algorithms, are dependent on time. Tough the sampling frequency of 

the sensor can be adjusted by four fixed parameters or individually, the operating system 

takes the value for the sampling frequency only as suggestion and performs other tasks in the 

background. Often enough the sensor samples slightly slower than the actual sampling 

frequency as other tasks are more important for the operating system in the background (these 

tasks cannot be stopped, as they are system tasks). So for the algorithm or any calculation it 

is problematic to rely on fixed time intervals, as they often are slightly shorter or longer. The 

errors are adding up over time and contribute heavily to the whole calculation.  
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A possible solution was to wait before calculating and estimating depth. At least 100ms 

proved to be useful. Still a problem is, that some time stamps are above the 100ms or greater 

and also the fact, that numerous important values are lost during the defined pause. During 

peak detection this can be fatal, as a global maximum could be skipped. 

Of course, these sensor and device specific problems have been compared to other works, 

like PocketCPR [20] or an interesting study called “Development of Android Based Chest 

Compression Feedback Application Using the Accelerometer in Smartphone” [21]. The 

PocketCPR device allows a direct feedback for the reanimating person, but not the dispatcher. 

Despite intense researches it was not possible to find further information about the method 

for depth and frequency sensing. At least more insight for the sensor was gained, as the 

sensor in this device is more advanced and specifically made for the purpose of reanimation, 

but no further information about the type and model could be gained. 

Also the study was not really helpful, although they used the accelerometer sensor in 

smartphones, but they applied further filtering methods and used other sensors in order to 

stabilize the results. Also the application was not tested the full ten minutes continuously, 

which is important for real life applications. Nevertheless, it was very helpful for the algorithm 

development, as the filter methods have been reproduced slightly differently and some ideas 

were gained. 

 

The final results in the previous chapter showed, that there are several possible solution 

approaches, but not all are very useful or lead into the right direction. During the project and 

especially in this thesis it turned out, that the frequency detection is much easier than the 

continuous position determination, especially in smaller unit ranges (like cm’s). The 

accelerometer is not only very noisy and drifts, but also the measurement is often different. 

The equations, that are theoretical possible or at least physically, are not practical in real world 

applications and especially in smartphone applications that try to determine the position. 

Unless the smartphone is accelerating in one direction only, the calculations will fail normally 

without including a set of gyroscopes and far more accurate sensors. Accelerometers 

measure the acceleration in a body fixed reference frame, where normally displacement in 

earth fixed reference frames is necessary.  

Therefore, it is not possible to only integrate the accelerometer twice and find the 

displacement, except it is rotated into the earth fixed frame, before the integration takes place. 

All this works theoretically, assuming that the current available accelerometer sensors are 

perfect, however they are far away from being perfect, actually. There are two major errors 

present, where one is the bias11 on the accelerometer and the other an initially present tilt 

error. These errors add up during the integration for position determination and sophisticate 

the results. As double integration is the only way to find the displacement out of the 

acceleration, the sensor has to be improved or further sensors need to be included in order to 

correct the bias error [49]. 

 

During the thesis it became clear, that with the given premises of only using the low cost 

accelerometer sensor in smartphones, it is not possible to make a sturdy point about the 

displacement (at least for the required ten minutes continuously). Nevertheless, it is possible 

to make a point about the current reanimation frequency very well by using the developed 

peak detection algorithm. Even a position determination could be possible by using the peak 

detection and the current viewed values during the peak detection (a so called window of 

values) for the integration. As the values always are restricted to a certain amount and interval 

a double integration of those values would contain less errors, that could add up over time.  

                                                           
11 A measurement error that remains constant in his magnitude for all observations. Some kind of 

systematic error, that is non changing [48]. 



St. Pölten University of Applied Sciences 
 
 
 
 
 

76 
 

Nevertheless, the error is still present, due to already mentioned reasons. The 

implementation of the double integration after the peak detection was not part of this thesis 

anymore, as the frequency detection works very well and was used during the final studies for 

the application and the overall project. On the next page the main research question and its 

sub questions are once again shown and examined to answer with the findings during this 

thesis work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer 

Question 1 Can low-cost and mobile sensors like the accelerometer in mobile 

devices (e.g. smartphones) provide high-density data for real-time 

CPR signal processing and data transmission? 

 

According to the researches made during the project and the 

whole thesis, this question has to be split based on the 

feasibility. The previous results or algorithms showed, that the 

frequency detection is easier achievable in contrast to the depth 

detection with the defined methods or setup. Some algorithms 

are more stable in sense of frequency detection than others, like 

the peak detection for example. However, in other cases 

robustness in depth and frequency detection could not be 

achieved. 

 

The data acquisition of the smartphone is very high and 

provides a lot of data for further usage and calculations. 

Although the arrival of the data is dependent on the sampling 

rate, which for her part is depending on the operating system. 

The data comes in irregular intervals which makes a calculation 

or further usage very difficult and requires a lot of further 

processing. Also the calculations are limited due to the fact, that 

the accelerometer in smartphones is not developed for accurate 

position determination. 

 

Generally, it is possible to claim, that the low cost accelerometer 

sensor in mobile phones or any multi modal devices is good for 

simple measurements or measurements, that do not require a 

too high accuracy.  A simple frequency detection, which is 

basically a movement recognition or peak detection, where the 

peaks are produced by moving the phone is easily possible and 

applicable for the LifeStream project. 

On the other hand, the numerous tests and prototypic algorithm 

implementations showed, that a precise depth detection is not 

possible by just using the devices accelerometer sensor. The 

measured raw values are too noisy and a precise calculation 

cannot be performed due to physical and technical limitations. 

At least not in the required unit range of centimetres, which 

would be necessary for the CCD detection. 
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Q1.3: How can  

 

 

 

 

 

 

 

 

 

  

While working on the project and thesis continuous updates 

have been made for the application. For example, the full 

screen mode is implemented (as far as possible) and the sensor 

usage is stopped, once the application stops or the transmission 

is shut down. The data transmission uses the JSON format for 

small and short packages that are continuously sent. The 

transmission is performed by using TCP, which ensures that the 

packages are delivered to the server. For further stability all 

processes are terminated appropriately and the calculation is 

optimized as well. 

How can the application be optimized, as well as the data transmission, 

to ensure a fluent transmission and appropriate visualization on the 

client side (website)? 

Which real-time algorithms can be used for frequency detection (chest 

compression rate = CCR) and distance detection (chest compression 

depth = CCD)? 

Answer 

Question 1.1 

Various algorithms have been tried out during this thesis. 

Though the best one, that is used during the user test, is the 

peak detection, which makes a point about the current 

reanimation frequency. Compared to other algorithms and 

tests, the peak detection is the most promising for the CCR 

detection, where CCD detection is not really possible with the 

defined technology. 

Is it possible to make a testimonial evidence about distance detection 

with the accelerometer (low cost sensor)? 

Answer 

Question 1.2 

Based on the researches and explanations during this thesis it 

is theoretically possible, but the sensor produces too much 

noise and drift and the smartphone sampling rate is also 

inappropriate. Therefore, no testimonial evidence about 

continuous distance sensing is possible over ten minutes or 

more. However, from peak to peak distance sensing could be 

feasible, if further researchers and testing is performed. Some 

of the algorithms for distance calculation are able to perform 

well for a short amount of time, before the error increases. 

Answer 

Question 1.3 
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7 Summary 
Aim of this thesis was to find a possible algorithm in order to detect important parameters, the 

chest compression rate and frequency, during a cardiopulmonary resuscitation in a cardiac 

arrest situation. The reanimation is performed by a layperson who receives guidance over the 

phone from a dispatcher, until the ambulance arrives. Often enough the layperson reanimates 

in the wrong frequency and not deep enough, which is not promoting for the overall good 

outcome of the situation. The right frequency of 100 pushes per minute and the optimal depth 

of 54 mm is important according to medical guidelines. 

The thesis and the research during the thesis evolved around a project called “LifeStream” 

which is a collaboration between the university of applied sciences (FH St. Pölten), the medical 

university of Vienna and Notruf NÖ GmbH. The idea was or is to support laypersons and 

dispatchers by using the smartphone, which is already in use for the call, for further information 

gain during an ongoing reanimation process. While the person is reanimating, the  

 is able to give further feedback by using the developed smartphone application, as it transmits 

information about the reanimation process to a corresponding website.  

 

The project started by developing a simple application for acceleration detection and a server 

to display it. Later a website was developed in order to visualize the parameters of the 

reanimation and the current reanimation curve (moving curve of the phone). During the work 

on the project and thesis numerous other projects have been viewed, which deal with similar 

subjects, but not exactly the same. Based on the researches, it was possible to gain further 

insight in the smartphone, sensor and server thematic. The server and website are not directly 

part of this thesis, nevertheless work very well and are able to display the data in nearly real 

time. The server accepts information from mobile clients on the one side and deploys the 

information on the other side to connected website clients, that view the information.  

The smartphones collect the acceleration data in real time and process it further. The values 

are for example filtered before further calculations are performed or stored for later usage. 

Most of the developed algorithms use the linear accelerometer sensor of the smartphone, 

which already filters out the gravity component, that is affecting the z-axis and smooth the 

values. All calculations for the algorithms are performed by the smartphone, as the way to the 

server and back would be too long, if the calculation was based on the previous and next 

values. Each time a new value arrives, it is stored in an array or container for further 

calculations, that are based upon more values. If the data were transferred to the server, the 

time would also slightly shift, even more than it is actually doing due to the fact that the 

sampling rate of the smartphone is not exact. 

 

During the thesis work and research, it became more and more clear, that admittedly it is 

theoretically possible to calculate the displacement out of the acceleration, but not practically. 

The accelerometer sensor of the smartphone is very noisy and drifts over time, the continuous 

non-zero error mean adds up during the calculation very fast. As the acceleration values need 

to be integrated twice in order to get the displacement, the error is increasing even faster. The 

smartphone accelerometer sensor is not made for precise position determination, as it is 

normal purpose is to detect whether the user is performing a shake or any other gesture. 

The accelerometers, that are implemented in nowadays smartphones and older ones, are not 

that precise and even though the linear accelerometer is used, the values are often enough 

not accurate. The linear accelerometer even often consists of different parts, depending on 

the manufacturer of the smartphone. As the linear accelerometer is a fused sensor, out of 

others, the other sensor can be the gyroscope or the magnetometer or any other useful sensor 

for filtering out the gravity and smoothing the values. 
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Although it still was possible to gain at least information about the frequency, the 

phone is moving and the reanimating person is pushing. By implementing some sort of peak 

detection algorithm, it is possible to measure the frequency independently of the actual 

compression depth. Tests with real users have shown, that during an ongoing reanimation 

process for ten minutes, the user is continuously changing his or her reanimation behaviour, 

as time passes by. At the beginning most people are reanimating much faster, as they still 

have more power reserves and near the end the reanimation is much weaker, but still the 

frequency is right. The algorithm detects these changes in the reanimation behaviour and is 

not fixed to a certain minimum push, that needs to be achieved. Even a weak push in the right 

frequency can contribute at least a little to the overall outcome [50]. 

 

All in all, the project has opened a fantastic possibility for future research and development. 

For example, the peak detection could be further refined and the double integration performed 

only during the short period of the current peak detection. Before the next update arrives, the 

values are removed and therefore also possible errors. The project gave a fantastic insight 

into sensor programming, server programming and website visualization and is an ambitious 

project, which definitely should be further refined and investigated. 
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13 List of Abbreviations 

A 

API  Application Programming Interface 

C 

CCD  Chest Compression Depth 

CCR  Chest Compression Rate 

CPR  Cardiopulmonary resuscitation 

CSS  Cascading Style Sheets 

csv  Comma-Seperated Values 

D 

DOM  Document Object Model 

E 

EMD  Emergency Medical Dispatcher 

EMS  Emergency Medical Service 

ERC  European Resuscitation Council 

G 

GPS  Global Positioning System 

H 

HCI  Human Computer Interaction 

HTML  Hypertext Markup Language 

HTTP  Hypertext Transfer Protocl 

I 

IDE  Integrated Development Environment 

IP  Internet Protocol 

J 

JSON  JavaScript Object Notation 

L 

LTE  Long Term Evolution, Long Term 

Evolution 

S 

SMA  Simple Moving Average 

SQL  Structured Query Language 

SVG  Scalable Vector Graphics 

T 

TCP  Transmission Control Protocol 

U 

UDP  User Datagram Protocol 
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14 Appendix 
Included with this thesis is a CD with the following components: 

 All described applications and the final application. 

 Server and website folder structure for an easy deployment to every NodeJs runtime 

environment. 

 This thesis in .pdf format. 

 

 


