
DIPLOMARBEIT

Implementation of Different Semi-Lagrangian

Convection Schemes for the Simulation of Room

Air Flow

Ausgeführt zum Zweck der Erlangung des akademischen Grades eines

Dipl.- Ing. (FH) für Computersimulation
am Fachhochschul-Diplomstudiengang Computersimulation St. Pölten

unter der Leitung von

Dipl.- Ing.Dr. Stefan Barp

und Dipl.- Ing.Dr.Christian Harlander

ausgeführt von

Oliver Dunkl

Matr.Nr. 0210095007

St. Pölten, September 2006

Zusammenfassung

Diese Arbeit beschäftigt sich mit der Implementierung von verschiedenen Algorith-
men für die online Strömungsberechnung. Online Strömungsberechnungen sind Berech-
nungen von Strömungen die während der Simulationsdurchführung eine Änderung der
Umgebung zulassen. Zur Berechnung dieser Strömungen werden unterschiedliche Semi-
Lagrange Verfahren in einem Computational Fluid Dynamic (CFD) Code verwendet.
Unter Computational Fluid Dynamic versteht man Berechnungen von Strömungen mit-
tels der Unterstützung von Computern.

Im ersten Teil der Arbeit werden verschiedene Interpolationsarten auf Genauigkeit und
Rechenzeit verglichen. Besondere Sorgfalt wird hierbei auf die lineare Interpolation,
die Polynominterpolation und die Spline Interpolation genommen, da diese Interpola-
tionsarten am öftesten verwendet werden.

Der zweite Teil widmet sich der Implementierung dieser Interpolationsarten. Es wird
der theoretische Hintergrund dieser Algorithmen gezeigt und wie sie in einer Pro-
grammiersprache implementiert werden können. Außerdem wird eine Möglichkeit be-
schrieben wie diese Algorithmen in einen bestehenden CFD Code implementiert werden
können.

Im letzten Teil dieser Arbeit werden verschiedene ausgewählte Beispiele anhand eines
eigens entwickelten Simulators untersucht, die zuvor analytisch berechnet wurden. An-
hand dieses Simulators können die Ergebnisse der ausgewählten Interpolationsarten gut
visualisiert und verglichen werden.

Abstract

This thesis investigates the implementation of different algorithms for the real time
fluid flow. Real time fluid flow means that it is possible to change the environment
of the simulation during the simulation. This fluid flow should be calculated with
a Computational Fluid Dynamic (CFD) code by different semi-Lagrangian schemes.
Computational Fluid Dynamic means the calculation of fluid flow with the support of
computers.

In the first part of this work different interpolation schemes are determined for their
accuracy and time of calculation. Special emphasis and care is taken to analyse the
linear interpolation, the polynomial interpolation and the spline interpolation scheme
because that are the most important interpolation schemes.

The second part of this work shows the implementation of the above mentioned inter-
polation schemes. The theoretical background of the interpolation schemes are shown
as well as implementation in an arbitrary programming language. Additionally there
is shown the possibility how to implement such an algorithm in an established CFD
code.

In the last part of this work we discuss some selected examples, which are analytically
calculated. These examples are performed with a specifically developed simulator.
With that simulator the results of these selected interpolation schemes are compared
and visualized.

i

Acknowledgement

First of all I would like to express my thanks to my primary person who looks after my
thesis Dipl.-Ing. Dr. Stefan Barp, who provided me with a lot of feedback to my
research occupation at the ETH Zurich, and with interesting discussions about that
work. My deepest appreciations are due to AFC and the research group Air&Climate

at the ETH in Zurich for their perfect working environment and their support for my
thesis.

I would like to extend a special thank to my secondary person who looks after my the-
sis Dipl.-Ing.Dr.Christian Harlander who gaves me his stimulus in the subject
matter of the simulation technique especially in the discretization methods and for the
help with words and deeds.

I am very grateful to Saikat Roy for his corrections of my work. I owe gratitude to
number of my colleagues at the research group Air&Climate at the ETH Zurich for the
interesting discussions, their support and cooperation especially Daniel Rusch, Yves

Brise, Basil Weber and Farid Dshabarow.

After that I would thank Dr.Alfred Moser and Daniel Rusch for their diversified
ventures. They made a lot of fun and that was a good opportunity to get to know the
other colleagues.

Finally I wish to thank my parents for their continuous support during all the years of
my study.

ii

Contents

1 Introduction 1

1.1 Introduction to real time fluid flow . 1
1.1.1 A fluid in a box . 2
1.1.2 Basic approach to calculate a scalar value 3

1.2 Presentation of the problem . 4
1.3 Motivation . 5

2 Introduction to different interpolation schemes 6

2.1 Presentation of the problem of the interpolation 6
2.2 Linear interpolation . 7

2.2.1 Fundamentals of one-dimensional linear interpolation 7
2.2.2 The linear interpolation in multiple dimensions 8
2.2.3 Implementation of the two-dimensional linear interpolation . . . 9
2.2.4 Example of the two-dimensional linear interpolation 10
2.2.5 Determination of the error of the linear interpolation 10
2.2.6 Increase accuracy with increasing the cell points 12
2.2.7 Number of operations of the linear interpolation 14

2.3 Polynomial interpolation . 16
2.3.1 Fundamentals of the polynomial interpolation 16
2.3.2 Two-dimensional polynomial interpolation 17
2.3.3 Implementation of the bicubic interpolation scheme 17
2.3.4 Error calculation of the polynomial interpolation 19
2.3.5 Number of operations of the polynomial interpolation 20
2.3.6 Overshoots and clipping . 20
2.3.7 Quasi monotonic Lagrange interpolation 21

2.4 Bicubic Spline Interpolation . 21
2.4.1 Spline interpolation in one dimension 22
2.4.2 Spline interpolation in multiple dimensions 23
2.4.3 Example of the bicubic spline interpolation 24
2.4.4 Determination of the error of the bicubic spline interpolation . . 25
2.4.5 Number of operations of the bicubic spline interpolation 26

3 Implementation of different interpolation schemes 28

3.1 Make the velocity field constant . 28
3.2 Bilinear interpolation scheme . 29

3.2.1 Bicubic interpolation scheme . 30
3.2.2 Bicubic spline interpolation scheme 30

iii

4 Evaluation of different interpolation schemes 32

4.1 Simple wind tunnel . 32
4.2 Convection of a step profile . 33

5 Summary and outlook 36

iv

Chapter 1

Introduction

In the world of fluid flows are important, e.g. rising smoke, clouds and mist in the flow
of rivers and oceans. This fact is the reason why some physical scientists developed
mathematical models for most fluid flows occurring in the nature. In the time of
Euler, Navier and Stokes these developments have led to the so-called Navier-Stokes

equations. In (1.1) the Navier-Stokes equation describes the incompressible fluid flow.

∂~u

∂t
+ (~u · ∇)~u = −∇p + ν∇2~u + ρ~f (1.1)

In (1.1) ~u is a vector representing the velocity of an infinitesimal element of mass at
a point in 3D space, p is the scalar pressure at the same point, ρ is the mass density
at the point and is assumed constant throughout the medium, ν is the viscosity of
the medium, and ~f is a vector acceleration due to some constant external force on the
infinitesimal element, usually taken to be gravity.

In general, these algorithms strive for accuracy, are quite complex and time consuming.
Additionally, there are no analytical solutions available in many cases. Therefore, since
the computers have revolutionized our life, a lot of efforts were made to find approaches
to solve these equations numerically.

Since computers became faster and faster over the last few years, programmers and
computer graphic designers took the challenge of developing numerical algorithms for
real time fluid effects for the computer games industry. These computer games provide
users a plausible virtual world, which includs fluid-like effects. For developing such
computer games it is important both that the simulation looks convincing and is fast
enough for the familiar home computers. For that reason the numerical algorithms for
solving the Navier-Stokes equation were taken once again and were optimized for speed
by Jos Stam [Sta03].

1.1 Introduction to real time fluid flow

Real time fluid flows are so called by the computer game industry because of calculat-
ing and presenting some fluid-like effects at the same time running a sequence in the
game. The computer game industry applied some special numerical algorithm for that
fluid-like effects in the game, mainly using the algorithms of Jos Stam [Sta03] which
are based on the physical equations of fluid flow, namely the Navier-Stokes equations.

1

CHAPTER 1. INTRODUCTION

Fig. 1.1 shows the conventional process needed to solve such CFD problems. CFD
is an abbreviation for Computational Fluid Dynamics. Many of the commercial and
non-commercial CFD products take this course for solving CFD problems. These prod-
ucts are for example: Fluent [Inc06b], CFX [Inc06a] for the commercial products and
Gerris [Pop06] and OpenFOAM [Ltd06] for OpenSource products. In contrast to the

mesh/grid
generation

calculation visualization

pre-processing solving post-processing

Fig. 1.1: Conventional process of a CFD calculation

conventional approach in Fig. 1.1, the basic approach of Real Time Fluid Flows is
that the calculation and the visualization are combined in one simulation step which
is shown in Fig. 1.2. The biggest advantage of the Real Time Fluid Flow is to visual-
ize the results of a CFD simulation at the same time at which the calculation of that
simulation is running. An advantage of them, is that the effective time of the simula-
tion is less than the simulation time for the conventional approach. Of course, there
isn’t an advantage with no disadvantage. The consequence of decreasing the effective
simulation time is that the accuracy suffers.

1.1.1 A fluid in a box

For the numerical solution of the Navier-Stokes equations we need a finite representation
for our fluids. The useful approach is to subdivide the space as in Fig. 1.3 into a finite
region of space with identical cells and sample the fluid at each cell’s center [Sta03].
In this work we will only describe a fluid in two dimensions, but this approach is not
restricted to two dimensions. To use this approach for three dimensions is straightfor-
ward.

Therefore the fluid is modeled on a square grid like the one shown in Fig. 1.3. There
is an additional layer of grid around the fluid domain to simplify the treatment of the
boundaries. The velocity and all scalar values are defined in the center of each cell. In

mesh/grid
generation

calculation

visualization

pre-processing solving and
post-processing

Fig. 1.2: Basic approach of Real Time Fluid Flows

2

CHAPTER 1. INTRODUCTION

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0 1 2 N N + 1

0

1

2

N

N + 1

Fig. 1.3: Computational grids which are described in that thesis.
The grid contains an extra layer of cells to account for the boundary
conditions.

practice two arrays are allocated for the velocity with a size of size=(N+2)*(N+2).

static float u[size], v[size], u_prev[size], v_prev[size];

Single dimensional arrays are preferred over double ones for efficiency purposes [Sta03].
These arrays will be referenced by the following macro.

#define IX(i,j) ((i)+(N+2)*(j))

The cell (i,j) of the horizontal component of the velocity is given by the entry
u[IX(i,j)]. It is also assumed that the physical length of each side of the grid is 1 so
that the grid spacing is given by h=1/N [Sta03].

1.1.2 Basic approach to calculate a scalar value

In this thesis the advective transport of a scalar field by the velocity field is investigated.
The basic procedure to solve the advection step is shown in Fig. 1.4. In Fig. 1.4(a) the
velocity field is shown. For a better oversight only one velocity vector is displayed in
the grid.

�

(a)

	

	

	

	

+

(b)

+

(c)

Fig. 1.4: Basic idea behind the advection step. The searched point
(a) will be traced back in time through the velocity field, interpolate
the point (b) and write it back to the searched point (c).

3

CHAPTER 1. INTRODUCTION

In this thesis the density is taken as a scalar value. The basic idea behind the ad-
vection step is instead of moving the cell centers forward in time through the velocity
field 1.4(a), we look for the particles which end up exactly at the cell centers by tracing
backwards in time from the cell centers, which is shown in Fig. 1.4(b) and Fig. 1.4(c).
The magnitude of the scalar value, that these particles carry is simply obtained by
interpolating the scalar value at its starting location from the closest neighbours.

1.2 Presentation of the problem

The approach of real time fluid flows is also interesting for CFD calculations and visu-
alizations i.e. for room air flow simulations. If these algorithms of real time fluid flow
are used in CFD calculations an important fact is the accuracy. The accuracy has to
be as good as possible for solving such CFD problems.

In this case the accuracy of the real time fluid flows will be reduced to the time dis-
cretization. If explicit numerical procedures are used, only small time steps can be
applied. This is because of the criterion of the stability of the convection term. This
causes huge computing time for simulating long time periods. For this reason there
are numerical procedures for the weather prediction which permit much higher time
steps for the simulations. These procedures are called semi-Lagrangian convection

schemes.

The following points are investigated in this thesis:

1. Numerical accuracy of the schemes. How accurate are the schemes compared to
analytical results. First the accuracy of the interpolations are investigated with
respect to the analytical results of a mathematical function. Second the semi-
Lagrangian convection schemes are investigated with analytical results from other
papers, and third the combination of the interpolation and the semi-Lagrangian
schemes are investigated.

2. Calculation time of the schemes. An important factor of such schemes is the
calculation time of the procedures. We investigate the calculation time with their
floating point of operations (FLOPS) of each procedure.

3. Finding the optimal procedure for the interpolation and the semi-Lagrangian schemes.

Establishing point 1 and 2, gives an optimal procedure for the schemes. It is
possible that the scheme which is included in the solver is already the optimal
scheme.

4. Implementation of the schemes. How easy is it to implement the algorithms in
an existing real time CFD solver.

In this work the accuracy of the interpolation schemes is presented along with the imple-
mentation in a small real time fluid solver, and second the semi-Lagrangian convection
scheme is presented and then the implementation of the schemes are described.

4

CHAPTER 1. INTRODUCTION

1.3 Motivation

Today there are lot of products which follow the conventional solution of CFD solvers,
showed in Fig. 1.1. To get a broad overview of the results of some CFD problems it is
nice to simulate and present the results quickly and also it will be nice to intervene to
the simulation just by calculating.

After the development of the real time fluid flow for Games [Sta03] and the previous
work of Jos Stam it is possible to implement such methods in a scientific CFD solver
which calculates the problems and present the results at the same time. In addition,
interaction with the real time CFD solver can also be permitted during the simulation,
which means i.e. one can move some objects during the simulation run and see the
result simultaneously.

In contrast to the computer games where the accuracy of the calculation is not so
important but only the visualization where the results look like fluid-effects, for the
CFD calculations it is important that the accuracy is as good as possible.

For this reason this thesis investigates special methods of the numerical algorithms for
the weather prediction which are also important for the room air flow. The numerical
weather prediction has been developed as a procedure which is stable and relatively
accurate for long time steps. This is also important for simulating room air flow.

5

Chapter 2

Introduction to different
interpolation schemes

Sometimes there is only a set of points x1, x2, . . . , xN (i.e. points from a measuring
experiment) given from a function f(x) and we don’t know the analytical expression
for f(x). To get points between these given points, you can fit a curve between these
data points or find a function which is closely to these data points. This is called curve

fitting and the interpolation is a special case of curve fitting, in which the function
has to go exactly through the data points. There are a few of different interpolation
schemes which are more or less accurate.

2.1 Presentation of the problem of the interpolation

The idea how to implement interpolation schemes in a Real Time CFD solver is that
in every center of a grid cell a scalar value and the value of the velocity vector is
stored. (2.1) and Fig. 2.1 shows that the point Px,y at which the scalar value will be
interpolated has to be between its four neighboring grid points. However, it is also
important to know the values between these fixed grid points (Pi,j).

Pi,j ≤ x ≤ Pi+1,j and
Pi,j ≤ y ≤ Pi,j+1 for i, j = 1, .., N − 1

(2.1)

It is important that we define in which arrangement that points appears. We assume
that the points are arranged counterclockwise.

�

��

�

�

Pi,j Pi+1,j

Pi,j+1 Pi+1,j+1

di

dj desired value Px,y

at location (x, y)

Fig. 2.1: Four neighboring points for a 2D interpolation

6

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

P1 = Pi,j

P2 = Pi+1,j

P3 = Pi+1,j+1

P4 = Pi,j+1

(2.2)

There are some interpolation schemes which will be used to interpolate the searched
values at point Px,y. A few interpolation schemes will be described in the next sections.

2.2 Linear interpolation

The easiest way to interpolate some measured data is the piecewise linear interpolation.
It is the easiest interpolation method because only two data points are required. The
biggest drawback of this interpolation scheme is that you need a lot of data points if
you want to get a very accurate interpolation there. The linear interpolation works
by drawing a straight line between these two neighboring data points and returns an
appropriate point along that line.

2.2.1 Fundamentals of one-dimensional linear interpolation

For the better understanding the linear interpolation scheme is described in one dimen-
sion. One dimensional linear interpolation means that there is one s-value for a given
x-value which you can see in Fig. 2.2. The linear interpolation in 1D could be reduced

xx1 x2

sx1

sx2

s

�

�

∆x

∆
s

original data

interpolated data

Px1

Px2

Fig. 2.2: Principle of 1D linear interpolation

to the calculation of the slope of a right-angled triangle. With that equations in (2.3)
there could be solved the linear interpolation between the points Px1,y1

and Px2,y2
.

s = k · x + d

k =
∆s

∆x
=

sx2
− sx1

x2 − x1

d = sx1

(2.3)

Linear interpolation is shown in (2.4). Each x-value gives an interpolated s-value back.

s =
sx2

− sx1

x2 − x1

· (x + x1) + sx1
(2.4)

7

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

For the real time CFD solver which will be described in this thesis, the linear interpola-
tion in one dimension is not so interesting as the interpolations in multiple dimensions.
For that reason the next section will describe the linear interpolation in more than one
dimension.

2.2.2 The linear interpolation in multiple dimensions

For a better understanding, here the linear interpolation in more than one dimension
will only be described the interpolation in two dimensions, but the interpolation in
more than two dimensions is straightforward.

One idea to interpolate data points in two dimensions is to perform a linear interpolation
in two directions. First, the linear interpolation will be performed in one direction and
then in the other direction. This procedure is also called bilinear interpolation. To

�

��

�

�

Pi,j Pi+1,j

Pi,j+1 Pi+1,j+1

di

dj

xl xh

y h
y l

grid lines
�

desired point (x, y)
�

grid cell points

Fig. 2.3: Principle arrangement of the two dimensional linear interpolation

calculate the two dimensional linear interpolation there is only a weight needed. The
distance of the given cell points is di in x-direction respectively dj in y-direction. It
it necessary to break the distances di and dj down between the desired point and the
grid cell points into a high value and a low value.

di = xh + xl = P x
i+1,j − P x

i,j

dj = yh + yl = P y
i,j+1 − P y

i,j

(2.5)

After the splitting di and dj into a high and a low value these values have to be weighted.
In (2.6) there is the value for the x-direction and the value for the y-direction weighted.

t ≡
xl

di

u ≡
yl

dj

(2.6)

The value t is the ratio factor of the x-direction and the value u is the ration factor of
the y-direction, and they can be assumed values between 0 and 1. After defining the
arrangement of that points, which is shown in (2.2) the desired point Px,y get its value
with (2.7).

sx,y = (1 − t)(1 − u) · s1 + t(1 − u) · s2 + tu · s3 + (1 − t)u · s4 (2.7)

8

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

2.2.3 Implementation of the two-dimensional linear interpolation

After a look at the basic theoretically background of the linear interpolation in two
dimensions, these discussed equations will be implemented into some algorithms. These
algorithms will be written in C but I think it is not very difficult to implement these
algorithms in another programming language. There is no special reason why the
programming language C is used for that algorithms.

It will be assumed that we know the coordinates x and y of the desired point Px,y. To
get the value at this point a simple trace back will be performed in time through the
velocity field from the cell centers [Sta03], which is shown in Fig. 1.4. First it has to be
detected that the x and y values of the point Px,y are not outside of the working space
of the Real Time CFD solver. That means these values are not allowed to be in the
boundary space which is shown in Fig. 2.4. If the value of x or y is greater than N +0.5

��

��

��

��

�

0 1

��

��

��

��	

N N + 1

Fig. 2.4: Boundary check for the desired point Px,y

or smaller than 0.5, the desired point will be moved to the border of the simulation
space. After that check, if the values of x and y are outside of the simulation space,
the nearest neighbours has to be found.

List. 2.1: Boundary check

if(x < 0.5) x=0.5; if(y < 0.5) y=0.5;

if(x > N+0.5) x=N+0.5; if(y > N+0.5) y=N+0.5;

The nearest neighbour in the x-direction will be found with List. 2.2. This type of
getting the nearest neighbours works only if di and dj equals 1, that means that the
space between two grid points has to be 1 in that case.

List. 2.2: Find nearest neighbours

/* if di and dj are 1 */

i0=(int)x; i1=i0+1; j0=(int)y; j1=j0+1;

The next step is to ascertain the ratio of the x and the y value, which is described in
(2.6). Fig. 2.3 shows the allocation of the ratio of the x and y values.

List. 2.3: Ratio of the 2D linear interpolation

t=x-i0; u=y-j0; /* if di and dj are 1 */

The last step of the two-dimensional linear interpolation is to calculate the scalar value
on the point Px,y like in (2.7). We assume that the scalar value is s. The scalar is also
an array like the velocity fields u and v of the same size size=(N+2)*(N+2) which is

9

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

shown in Fig. 1.3. IX(i,j) gives the index of the array back with the index i, j, see
Section 1.1.1 on page 2, s0 in List. 2.4 is the scalar field one time step earlier that s.

List. 2.4: Two-dimensional interpolation

s[IX(i,j)] = (1-t)*(1-u)*s0[IX(i0,j0)] +

t*(1-u)*s0[IX(i1,j0)] +

t*u*s0[IX(i1,j1)] +

(1-t)*u*s0[IX(i0,j1)];

2.2.4 Example of the two-dimensional linear interpolation

Now for a better understanding a simple example of the bilinear interpolation is shown.
In this case we take a 4 x 4 grid in two dimensions, that means we have 16 centered cell
points which are shown with a red cross in Fig. 2.5, left. The scalar value on each point
of the grid is sin(x) · sin(y). On the right hand side of Fig. 2.5 the analytical data for
each point are shown. This interpolation takes the four neighbouring grid points which

z

x

y

1

2
3

4 1

2

3

4

1.0

−1.0+ + + +

+ + + +

+ + + +

+ + + +

1 2 3 4

1

2

3

4

Fig. 2.5: Analytical data of sin(x) · sin(y) in the map view on the left side and in the
surface view on the right side.

is described in the previous section and it shows a coarse approach to the analytical
result in Fig. 2.5. To find out how precise the result of the linear interpolation is, it
is necessary to calculate the error between the linear interpolation and the analytical
results. To know if that interpolation is appropriate it is important to find out the
failure of the bilinear interpolation.

2.2.5 Determination of the error of the linear interpolation

The error of the linear interpolation in two dimensions will be determined with (2.8).
Ex,y is the error value of the point Px,y and Sx,y is the interpolated scalar value of the
point Px,y.

Ex,y = |Ox,y − Sx,y| (2.8)

Ox,y describes the analytical value of the point Px,y, in that case, which is described in
the previous example, Ox,y = sin(x) · sin(y).

10

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

z

x

y

1

2
3

4 1

2

3

4

1.0

−1.0+ + + +

+ + + +

+ + + +

+ + + +

1 2 3 4

1

2

3

4

Fig. 2.6: Bilinear interpolation with a grid size of 4 x 4

List. 2.5: 2D error calculation

/* s_val is the interpolated value of the point x,y */

error = fabs((sin(x)*sin(y)) - s_val);

List. 2.5 shows how to implement (2.8) in the existing code. The value s_val describes
the interpolated scalar value of the point Px,y. Fig. 2.7 shows the allocation of the
error over the two dimensional grid of the linear interpolation from Fig. 2.5. It shows
an error value between 0 and 1. The red region on the left side of Fig. 2.7 means only
that the value of the error is higher than 0.25. It shows that the error on the border of
the bilinear interpolation is very high.

The function fabs() returns the absolute value of a floating point value. It is important
to include math.h in the source code, if that isn’t in the source code it will not be
compiled without failures. To get an estimation of the overall error there will be

z

x

y

1

2
3

4 1

2

3

4

0.2

0.0+ + + +

+ + + +

+ + + +

+ + + +

1 2 3 4

1

2

3

4

Fig. 2.7: Error of the bilinear interpolation with a grid size of 4 x 4.

11

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

defined how many points in the grid have an error over 0.2. Since we take the absolute
value of the difference between interpolated scalar value and original analytical scalar
value, the maximum error could only be between 0 and 1. List. 2.6 shows how to get
the numbers of points with an error above 0.2.

List. 2.6: Error calculation

if(error > 0.2) nerror++;

In the case of the 4 x 4 grid the number of errors bigger than 0.2 are:

grid:40x40 , cells:1600, nerror:78, percentage:4.875000

That means that between the fixed cell center points there are 10 points for the linear
interpolation. So we have a grid with 40 x 40 linear interpolated scalar values and 1600
cells. nerror returns the number of points which are over the error limit of 0.2. The
last value percentage returns the percentage of the number of errors above the error
limit.

2.2.6 Increase accuracy with increasing the cell points

One method to increase the precision of the linear interpolation is to take more cell
points, that means to increase the grid refinement. The scalar of the original data
would be kept in the same range, only the number of cell points are more then in the
previous example. Figure. 2.8 shows the same interpolation like in Fig. 2.7 but with
more grid cells.

This result looks more than the analytical result in Fig. 2.5 than the result with the 4 x 4
grid in Fig. 2.6. Fig. 2.9 shows the error of the 8 x 8 grid. This figure shows that the
8 x 8 grid is more precise than the 4 x 4 grid which is shown in Fig. 2.7. To investigate
the influence of the number of cells for the bilinear interpolation, calculations with
different grid sizes are performed.

z

x

y

1.0

−1.0

Fig. 2.8: Bilinear interpolation with a grid size of 8 x 8

12

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

z

x

y

0.2

0.0

Fig. 2.9: Error of the bilinear interpolation with a grid size of 8 x 8

Tab. 2.1 shows the number of errors and the percentage of the error related to the
number of cells. There the first two columns describe the size of the grid, e.g. a 4 x 4

grid size cells nerror percentage

4 x 4 1600 78 4.875
8 x 8 6400 70 1.093

16 x 16 25281 41 0.162
32 x 32 101761 49 0.048
64 x 64 409600 188 0.046

128 x 128 1638400 328 0.020

Tab. 2.1: Calculation of the error of the different grid sizes

grid has 1600 cells. The third value shows the number of cells for which the error is
larger than 0.2. The last column shows the percentage of the number of cells for which
the error is larger than 0.2. Figure. 2.10 shows the percentage of the error over the

 0

 0.2

 0.4

 0.6

 0.8

 1

2.5e+05 5e+05 7.5e+05 10e+05

number of cells

er
ro

r
[%

]

Fig. 2.10: Error of different grid sizes

13

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

number of grid cells. It shows that the error would be scatter if the number of grid
cells rises. So the error of the interpolation is quite nice but also important is the time
which will be spend for that interpolation.

2.2.7 Number of operations of the linear interpolation

Since the execution time of the program is very different on each computer, there the
operations will be described. To specify how often a function in a program is called, a
profiler is needed. In that case the GNU profiler is used. To evaluate that program with
the profiler, a special compiling flag is needed. The GNU compiler takes the flag -pg to
compile the program for profiling. After that the profile information could be written
into a file with the following command

\$ gprof ./a.out ./gmon.out > prof_info

For the the linear interpolation in two dimensions the number of calls of the function
which calculates (2.7) is specified. An output of the profiler is shown in List. 2.7. The
function interp calculates (2.7) and is called 1681 times.

List. 2.7: Output of the profiler

time seconds seconds calls Ts/call Ts/call name

0.00 0.00 0.00 1681 0.00 0.00 interp

This means that the interpolation is called as well 1681 times. In Tab. 2.2 there are
some columns from the typical profiler output shown. The first column shows the grid
size, the second column shows the percentage of the total time which the program spent
in the function interp. The third column shows the total number of seconds which
the program spent in the function interp. The fourth column shows the number of
calls of the function and the fifth column shows the time per call of the function.

Fig. 2.11 shows the graphical evaluation of the data in Tab. 2.2. Since only the total
time is interesting the program can also be started with the UNIX R© command time.
The last column of Tab. 2.2 shows the total time calculated by the command time.

List. 2.8: Output of the time command

0.04s user 0.00s system 93% cpu 0.038 total

All of that time measures are performed on a HP compaq nx9005 notebook with a
AMD AthlonTM XP-M 2400+ and 457 MB physical memory. Figure. 2.12 shows the

grid size time [%] time [s] calls time per call [ns] total time [s]

4 x 4 0.00 0.00 1681 0.00 0.038
8 x 8 0.00 0.01 6561 0.00 0.125

16 x 16 33.35 0.06 25600 781.66 0.426
32 x 32 55.58 0.10 102400 977.08 1.244
64 x 64 51.57 0.34 410881 815.75 2.908

128 x 128 70.04 2.14 1640961 1300.00 9.381

Tab. 2.2: Calculation table of linear interpolation for interp

14

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

 0

 2

 4

 6

 8

 10

2.5e+05 5e+05 7.5e+05 10e+05

number of cells

to
ta

l
ti
m

e
[s

]

Fig. 2.11: Calculation time of different grid sizes with linear interpolation

comparison between the number of errors and the calculation time of the bilinear in-
terpolation. It shows that the calculation time increases almost linear, and it will get
higher and higher when the percentage of the error decreases.

The optimal range of the bilinear interpolation will be in the middle of both curves. In
that area the calculation time will not be so big and the percentage of the error will be
small enough for getting sufficient results.

 0

 0.2

 0.4

 0.6

 0.8

 1

2.5e+05 5e+05 7.5e+05 10e+05
 0

 2

 4

 6

 8

 10

number of cells

er
ro

r
[%

]

to
ta

l
ti
m

e
[s

]
error
execution time

Fig. 2.12: Error and execution time of different grid sizes with the bilinear interpolation

15

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

2.3 Polynomial interpolation

The polynomial interpolation is the solution of the problem to find a polynomial from
n + 1 data points. There is an interpolation polynomial of degree n with n + 1 data
points. In the polynomial interpolation the neighbouring points are not connected with
a straight line, like in the linear interpolation, but more points are pulled up for the
interpolation.

There are a few basic approaches to solve this polynomial, (e.g Newton approach, La-

grange approach, . . .). Many people denote the polynomial interpolation with the
Lagrangian approach as Lagrangian interpolation and many papers are presently work-
ing with that approach [FSJ01]. The typical Lagrangian approach of the polynomial
interpolation is shown in (2.9) and (2.10).

sj(x) = sj

n
∏

k=0;k 6=j

x − xk

xj − xk

(2.9)

s(x) =

n
∑

j=0

sj(x) (2.10)

2.3.1 Fundamentals of the polynomial interpolation

The number of points (minus one) used in an interpolation scheme is called order of
the interpolation. Increasing the order does not necessarily increase the accuracy, es-
pecially in the polynomial interpolation [PTVF88].

The big difference between the linear interpolation and the polynomial interpolation
is that the polynomial interpolation takes more than two data points for the interpo-
lation and puts a higher order polynomial into these data points. That means that
the polynomial interpolation takes n data points for an interpolation of degree n − 1.
Figure 2.13 shows the principle representation of the polynomial interpolation.

xx1 x2

s1

s2

s

�

�

�

∆x

∆
s

original data

interpolated data

Px1

Px2

Fig. 2.13: Principle of 1D polynomial interpolation

16

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

2.3.2 Two-dimensional polynomial interpolation

The two-dimensional polynomial interpolation works as well as the two-dimensional
linear interpolation. The principle to take the four neighbors for the interpolation de-
scribed in Section 2.1 would also be applied for the polynomial interpolation. The basic
idea of that two dimensional polynomial interpolation is to break up the problem in a
succession of one dimensional interpolations.

Figure 2.14 shows the polynomial interpolation in two dimensions with four neighbor-
ing points. The comparison between that figure and Fig. 2.6 shows that their is no
difference. This is because in that case the two dimensional interpolation with four
neighboring points would break up into two polynomial interpolation in one dimension
with two neighboring points. That means that their are rather two linear interpola-
tions realized. On that reason there have to be implemented an other numerical

z

x

y

1.0

−1.0

Fig. 2.14: Polynomial interpolation in two dimensions with a high order of accuracy with
a grid refinement of 8 x 8

interpolation scheme or the neighboring points have to be incremented. So first an
other interpolation scheme would be described, called bicubic interpolation. That in-
terpolation scheme is a special numerical scheme for smoothness.

2.3.3 Implementation of the bicubic interpolation scheme

For the implementation of the bicubic interpolation scheme we took the algorithm
from [PTVF88]. The bicubic interpolation scheme requires the user to specify at each
grid point not just the function y(x1, x2), but also the gradients ∂y/∂x1 ≡ y1, ∂y/∂x2 ≡
y2 and the cross derivative ∂2y/∂x1∂x2 ≡ y12. With the following properties a cubic
interpolation function in the scaled coordinates t and u can be found:

• The values of the function and the specified derivatives are reproduced exactly
on the grid points.

• The values of the function and the specified derivatives change continuously as
the interpolating point cross from one grid square to another.

17

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

It is important to understand that nothing in the equations of bicubic interpolation
requires that the derivatives are correct. The smoothness properties are tautologically
forced, and have nothing to do with the accuracy of the interpolation. It is a separate
problem to decide how to obtain the values that are specified. The better the values
are, the more accurate the interpolation will be.

The best is to know the derivatives analytically, or to be able to compute them with
numerical algorithms at the grid points. Next best is to determine them by numerical
differencing. We decides to take centered differencing [FP02]. In (2.11) the function
for the centered differencing method for calculating the first derivative is shown.

(

∂y

∂x

)

i

≈
yi+1 − yi−1

xi+1 − xi−1

(2.11)

For the implementation we need a two-dimensional array and two one-dimensional ar-
rays for the calculation of the centered differencing method, see Fig. 2.15. Listing 2.9
shows how to implement the gradients and the cross derivative.

The first line in Listing 2.9 calculates the gradient ∂y/∂x1, the second line calcu-
lates the gradient ∂y/∂x2 and the third and the fourth calculates the cross derivatives
∂2y/∂x1∂x2. The two-dimensional array y1a stores the gradient ∂y/∂x1, the two-

i+2

Exact Backward

Central

Forward

y

xi−2 i−1 i i+1

Fig. 2.15: Definition of the derivative and its approximations

dimensional-array y2a stores the gradient ∂y/∂x2 and the cross derivatives ∂2y/∂x1∂x2

are stored in y12a. The values of the centered grid points are stored in the variable ya

and their coordinates are stored in x1a and x2a.

List. 2.9: Centered differencing

y1a[j][k]=(ya[j+1][k]-ya[j-1][k])/(x1a[j+1]-x1a[j-1]);

y2a[j][k]=(ya[j][k+1]-ya[j][k-1])/(x2a[k+1]-x2a[k-1]);

y12a[j][k]=(ya[j+1][k+1]-ya[j+1][k-1]-ya[j-1][k+1]+

ya[j-1][k-1])/((x1a[j+1]-x1a[j-1])*(x2a[k+1]-x2a[k-1]));

18

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

If we have the function y and the derivatives y1, y2, y12 we can do the bicubic interpo-
lation within a grid square. There are two steps to calculate this interpolation.

• First obtain the sixteen quantities ci,j , i, j = 1, ..., 4 using the routine bcucof

of [PTVF88].

• The second step is to substitute the c’s into any or all of the bicubic formulas for
functions and derivatives shown in (2.13).

y(x1, x2) =

4
∑

i=1

4
∑

j=1

cijt
i−1uj−1 (2.12)

y1(x1, x2) =

4
∑

i=1

4
∑

j=1

(i − 1)cijt
i−2uj−1(dt/dx1)

y2(x1, x2) =

4
∑

i=1

4
∑

j=1

(j − 1)cijt
i−1uj−2(du/dx2)

y12(x1, x2) =
4

∑

i=1

4
∑

j=1

(i − 1)(j − 1)cijt
i−2uj−2(dt/dx1)(du/dx2)

Figure 2.16 shows a wrong result ot the bicubic interpolation of sin(x) · sin(y). For the
calculation of this interpolation scheme we took the algorithms from [PTVF88].

z

x

y

1

2
3

4 1

2

3

4
-1
-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

1.0

−1.0+ + + +

+ + + +

+ + + +

+ + + +

1 2 3 4

1

2

3

4

Fig. 2.16: Bicubic interpolation with a 4x4 grid of the function z = sin(x) · sin(y)

2.3.4 Error calculation of the polynomial interpolation

To calculate the error of that interpolation scheme we need a working interpolation.
Since we do not get a correct result, we can not determine the error of the bicubic
interpolation scheme.

Also the calculation speed of that interpolation scheme is only interesting with a correct
result. Since we do not get a correct result of the scheme we are not able to determine
the calculation speed of that interpolation scheme.

19

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

2.3.5 Number of operations of the polynomial interpolation

The computing time is very important for calculating such interpolations. The comput-
ing time is directly proportional to the number of operations of the solving equation.
In the equation of the Lagrangian interpolation, see (2.9) and (2.10), the operations
at Tab. 2.3 with a degree N of the polynomial are required. There is a more detailed

addition −→ (N + 1)2 + N
multiplication −→ N(N + 1)
division −→ N(N + 1)

Tab. 2.3: Number of operations of polynomial interpolations

description of these operations in [Sch94]. The most significant part of this operations
is that one which increases with square. This results that only terms with N 2 are im-
portant for the number of operations. It’s safe to say that the number of calculations
could be ascertain with (2.13).

number of operations = 3N 2 + O(N) (2.13)

The important part of the operations is in 3N 2 and the rest of the operations which
are shown in Table 2.3 are pulled together in O(N).

2.3.6 Overshoots and clipping

If the measured data has a steep increase or a jump inside, and this area should be
interpolated with a Lagrangian interpolating polynomial of degree N , there could be
some overshoots in the interpolated data (Fig. 2.17.

One method to prevent such overshoots is to clip the data which are bigger or lower
than a defined limit. This procedure is called clipping [Beh95].

u1(x, y) =

umax for umax < u(x, y)
umin for umin > u(x, y)

u(x, y) for other
(2.14)

 0.5

 1

 1.5

 2

 2.5

-1 0 1 2 3 4

sc
al

ar
 v

al
ue

s

measure points

overshoot
data points

original data
interpolation

Fig. 2.17: Lagrangian interpolation with
N = 3 data points and overshoots

 0.5

 1

 1.5

 2

 2.5

-1 0 1 2 3 4

sc
al

ar
 v

al
ue

s

measure points

data points
original data
interpolation

Fig. 2.18: Lagrangian interpolation with
N = 3 data points and clipping

20

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

In Fig. 2.18 there are the same data points and interpolation data as plotted in Fig. 2.17,
but the clipping method is applied on the interpolated data.

In List. 2.10 the measured data would be interpolated and inspected if there is a value
which is bigger than max_val or lower than min_val. If the val is bigger than the
max_val, the value val would become max_val, if the value val is lower than the
min_val val would become min_val.

On the first line in List. 2.10 the value val would become the interpolated data which
is calculated by the method polint and on the second line there is the clipping method
which looks if the interpolated data are bigger or lower than the values max_val or
min_val like in (2.14).

List. 2.10: Clipping procedure

polint(x,y,N,di ,&val ,&error);

val=(val <min_val) ? min_val :((val >max_val) ? max_val:val);

2.3.7 Quasi monotonic Lagrange interpolation

The idea of this interpolation [BS92] is that an interpolation with a high order is first
calculated and then an interpolation with a lower order. After that an average of both
interpolations is calculated with a weight factor. That means that the percentage of
the interpolation with high order has to be as large as possible.

um = αuh + (1 − α)ul (2.15)

0 ≤ α ≤ 1 (2.16)

The value uh represents the interpolation with high order and ul represents the inter-
polation with low order. In (2.16) the ratio factor is shown. The ratio factor will be
calculated by (2.17) and (2.18). After that the ratio factor α is included in (2.15) to
get um.

qmax = umax − ul

qmin = umin − ul

p = uh − ul

(2.17)

α =

min(1, qh/p) for p > 0
min(1, ql/p) for p < 0
0 for p = 0

(2.18)

2.4 Bicubic Spline Interpolation

There is another common technique for obtaining smoothness for two or more dimen-
sional interpolation. It is called the bicubic spline interpolation. The interpolation
function is of the same form as (2.13), the values of the derivatives at the grid points
are determined by one-dimensional splines. The benefit of the spline interpolation in
contrast to the polynomial interpolation is that the spline interpolation do not evince
oscillations for higher polynomial order.

21

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

2.4.1 Spline interpolation in one dimension

For a better understanding how to implement the bicubic interpolation the spline inter-
polation will be described in one dimension. Spline interpolations are used for smooth
connections of different measured points, see Fig. 2.19. After the measured points are
defined such splines are applied on the data points and the curve between that points
will be drawn piecewise. For practical applications cubic splines are mostly used, that

0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

��

exact [sin(x)]

cubic spline

data points

x

s

Fig. 2.19: Spline interpolation in one dimension

means that each polynomial between two data points is of degree 3. Cubic Splines
are used because there is a good compromise between computational effort and accu-
racy [SC91] [BS92]. These pieces of curves are mathematically described with cubic
polynomials,

s(x) = ax3 + bx2 + cx + d (2.19)

where a, b, c and d are appropriate constants.

For getting a spline interpolation there are some rules necessary. Assumed that we
have different data points in an interval [A,B]

A = x0 < x1 < · · · < xn = B (2.20)

and their dedicated data points y0, y1, . . . , yn, the first rule is that each of the pieces of
curves have the form like in (2.19). The second one is that every spline passes through
each data point, shown in (2.21).

si(xi) = yi for i = 0, 1, ..., n (2.21)

The next rule is that the spline forms a continuous function over [A,B], like in (2.22).

si(xi+1) = si+1 for i = 0, 1, ..., n − 1 (2.22)

In addition it is necessary that the spline forms a smooth function over the interval
[A,B]. To ensure that the spline forms a smooth function we need the first derivative.

s′i(xi+1) = s′i+1(xi+1) for i = 0, 1, ..., n − 1 (2.23)

22

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

The last point is that the connection points have to be the same crook, that means
that there the crook has to be steady. To ensure that the crook is steady we need the
second derivative of the splines.

s′′i (xi+1) = s′′i+1(xi+1) for i = 0, 1, ..., n − 1 (2.24)

With these equations the cubic spline interpolation is not yet ready. To finish the
definition of the cubic spline interpolation we still need the boundary conditions. For
the cubic spline interpolation there are two possibilities. The first possibility is that
the second derivatives of the boundary data points are 0.

s′′0(x0) = s′′n(xn) = 0 (2.25)

These cubic splines will also called natural. The second possibility is that the gradient
of the boundary data points are pretended.

s′0(x0) = s0; s′n(xn) = yn (2.26)

These boundary conditions have effects on the hole curve, but these effects will be de-
creased to the middle of the curve. The main benefit of the cubic spline interpolation
is that it takes relative less computational power for a good result, so that in practical
use cubic splines are often used.

The implementation of the one-dimensional cubic spline interpolation is described
in [PTVF88]. There are only two functions which are necessary to calculate the cubic
spline interpolation in one dimension.

List. 2.11: Cubic spline interpolation in one dimension

void spline(float x[], float y[], int n,

float yp1 , float ypn , float y2[]);

void splint(float xa[], float ya[], float y2a[],

int n, float x, float *y);

It is important to understand that the function spline is called only once to process
the entire tabulated function in arrays xi and yi. Once this has been done, values of the
interpolated function for any value of x are obtained by calls to the separate routine
splint.

2.4.2 Spline interpolation in multiple dimensions

The cubic spline interpolation in two or more dimensions is called bicubic spline inter-

polation. This interpolation scheme is a common technique for obtaining smoothness
in two dimensions. The bicubic spline interpolation is a special case of the bicubic
interpolation scheme, which is described in Section 2.3.2.

The difference to the bicubic interpolation scheme is that the values of the derivatives
at the grid points are determined ’globally’ by one-dimensional splines. To interpo-
late one functional value, one performs m one-dimensional splines across the rows of
the table, followed by one additional one-dimensional spline down the newly created
column.

23

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

List. 2.12: Bicubic spline interpolation

void splie2(float x1a[], float x2a[], float **ya,

int m, int n, float **y2a);

void splin2(float x1a[], float x2a[], float **ya,

float **y2a , int m, int n, float x1,

float x2, float *y);

For quadratic regions m and n is equal, so we could simplify our variables.

N = m = n (2.27)

Now we can say we have a N xN grid like at the linear interpolation schemes in Sec-
tion 2.2. This two functions splie2 and splin2 are also described in [PTVF88].

2.4.3 Example of the bicubic spline interpolation

To compare the results from the bicubic spline interpolation with other interpolation
schemes, we create an example with a 4 x 4 grid in two dimensions, that means we have
16 centered cell points. These centered cell points are marked as a red cross in Fig. 2.20
on the left picture. The function we analyse is again sin(x) · sin(y). On the right hand
side you can see a much better approximation of the function z = sin(x) · sin(y)
compared to the bilinear interpolation with a grid size of 4 x 4 which is described in
Section 2.2.2 on page 8.

Fig. 2.21 shows the difference between the analytical result of the function z = sin(x) ·
sin(y) which is shown in Fig. 2.21(a) and the bicubic spline interpolation with different
grid sizes which are shown in Fig. 2.21(b), (c) and (d). It shows that the accuracy
increases if the grid size of the interpolation region increases.

z

x

y

1

2
3

4 1

2

3

4
-1

-0.5

 0

 0.5

 1
1.0

−1.0+ + + +

+ + + +

+ + + +

+ + + +

1 2 3 4

1

2

3

4

Fig. 2.20: Bicubic spline interpolation with a 4 x 4 grid of the function z = sin(x) · sin(y)

24

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

-1

-0.5

 0

 0.5

 1

(a) analytical result

-1

-0.5

 0

 0.5

 1

(b) result with gridsize 4 x 4

-1

-0.5

 0

 0.5

 1

(c) result with gridsize 8 x 8

-1

-0.5

 0

 0.5

 1

(d) result with gridsize 16 x 16

-1.0 1.0

Fig. 2.21: Results of the bicubic spline interpolation with different grid sizes

To know how accurate this bicubic interpolation is, it is necessary to define the error
of that interpolation scheme. This error will be described in the next section.

2.4.4 Determination of the error of the bicubic spline interpolation

The error of the bicubic interpolation scheme is described exactly as the error of the
bilinear interpolation scheme in (2.8). The implementation is also exactly as the error
implementation for the bilinear interpolation scheme in Section 2.2.5, page 10.

Figure 2.22 shows the error of bicubic spline interpolation with a 4 x 4 grid. It shows
that the major error occurs on the boundary of the interpolation. To decrease that
error we could increase the number of centered grid points with increasing the cells.
Table 2.4 shows the number of errors which are bigger than 0.25 and the percentage
of the error. It means we count all errors which are over 0.25 and divide them by the
number of cells.

25

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

(a) error with 4 x 4 grid

 0

 0.1

 0.2

 0.3

 0.4

 0.5

(b) error with 8 x 8 grid

 0

 0.1

 0.2

 0.3

 0.4

 0.5

(c) error with 16 x 16 grid

0.0 0.5

Fig. 2.22: Error calculation of the bicubic spline interpolation

grid size cells nerror percentage

4 x 4 1600 246 15.375
8 x 8 6400 1 0.015

16 x 16 25281 0 0.000
32 x 32 101761 0 0.000
64 x 64 409600 0 0.000

128 x 128 1638400 0 0.000

Tab. 2.4: Calculation of the error of the different grid sizes

2.4.5 Number of operations of the bicubic spline interpolation

That the execution time of that program is very different on each computer, there
the operations will be described. How to create the Tab. 2.5 and read the columns, is
described in Section 2.2.7, page 14. Tab. 2.5 is also produced by the GNU profiler which
is also described in Section 2.2.7 in detail. Figure 2.23 shows the error of the bicubic

 0

 50

 100

 150

 200

 250

0 10000 20000 30000 40000

nu
m

be
r

of
 e

rr
or

s

number of cells

Bicubic Spline Interpolation Error

Fig. 2.23: Error of the bicubic spline interpolation

26

CHAPTER 2. INTRODUCTION TO DIFFERENT INTERPOLATION SCHEMES

spline interpolation. Fig. 2.24 shows the calculation time of the function splin2 which
is essential for the bicubic spline interpolation. In contrast to that curve in Fig. 2.24
there is also the ideal speed curve shown. This ideal curve results from a function with
no input and no output, see Lst. 2.13.

grid size time [%] time [s] calls time per call [µs] total time [s]

4 x 4 0.00 0.01 1681 5.94 0.04
8 x 8 0.00 0.10 6561 15.24 0.18

16 x 16 3.03 0.33 25600 11.72 1.03
32 x 32 4.94 5.07 102400 50.80 6.88
64 x 64 6.39 29.11 410881 70.00 47.59

128 x 128 5.68 337.82 1640961 210.00 698.52

Tab. 2.5: Calculation time table of the bicubic spline interpolation

List. 2.13: Empty function

void empty_func() {}

Figure 2.24 shows that the bicubic spline interpolation takes a lot of time for the
calculation, but Fig. 2.21 shows that there are not so many cells necessary for getting
more accurate results. Figure 2.24 shows only the first 10 seconds because of the better
view of this curves. More values are shown in Tab. 2.5.

 0

 100

 200

 300

 400

 500

 600

 700

0 5e+5 10e+5 15e+5
 0

 0.2

 0.4

 0.6

 0.8

 1

ca
lc

ul
at

io
n

tim
e

[s
]

ca
lc

ul
at

io
n

tim
e

[s
]

number of cells

Bicubic Spline Interpolation
Ideal Speed

Fig. 2.24: Calculation time of the bicubic spline interpolation

27

Chapter 3

Implementation of different
interpolation schemes

This chapter describes how to implement the specified interpolation schemes in Chap-
ter 2 in an available CFD code [Sta03]. Jos Stam describes how to realize a fluid
dynamics solver for games based on a complete C code. That solver is geared towards
visual quality, and the emphasis of that solver is on stability and speed. This means
that simulations with that solver can be advanced with arbitrary time steps.

In that CFD code, the amount of density of the particles is simply obtained by a lin-
ear interpolation, as described in Section 2.2, page 7. In the present chapter it will
be described how to implement some interpolation schemes in the CFD code of Jos

Stam.

3.1 Make the velocity field constant

To compare the results of the interpolation schemes with the analytical results, it is
important to make the velocity field constant in one direction, either in x-direction or
in y-direction. We choose the velocity field is constant in x-direction, this means only
the vector u of the velocity field is working. For making the velocity field constant,
only the function advect is necessary.

In the case the function advect is called with the parameters which belongs to the
vector of the velocity in x-direction. Listing 3.1 shows the changed function vel_step

after the simplification. In that function only some function calls are removed from the
original CFD code.

List. 3.1: vel_step for constant velocity field

void vel_step(int N, float *u, float *v, float *u0,

float *v0, float visc , float dt) {

SWAP(u0,u); SWAP(v0,v);

advect(N,1,u,u0,u0,v0,dt);

advect(N,2,v,v0,u0,v0,dt,interp);

}

After that there is only the function call advect in the function vel_step working, the
velocity field has only values in x-direction. Figure 3.1 shows the velocity vectors in
x-direction at the center of each cell. For a better view there is only a 8 x 8 grid shown,
it could be also bigger or smaller.

28

CHAPTER 3. IMPLEMENTATION OF DIFFERENT INTERPOLATION SCHEMES

Fig. 3.1: Visualization of the constant velocity field ~u

3.2 Bilinear interpolation scheme

This linear interpolation scheme is the easiest scheme and requires least effort to
implement in the CFD code. The linear interpolation is already included by Jos

Stam [Sta03]. The only function which we have to look at is the function advect.
Section 2.2.3 describes these lines in Listing 3.2 more exactly.

List. 3.2: The function for the advection

void advect(int N, int b, float *d, float *d0, float *u,

float *v, float dt) {

int i, j, i0, j0, i1, j1;

float x, y, s0, t0, s1, t1, dt0;

dt0 = dt*N;

for(i=1; i<=N; i++) {

for(j=1; j<=N; j++) {

x = i-dt0*i[IX(i,j)]; y = j-dt0*v[IX(i,j)];

if(x<0.5) x=0.5; if(x>N+0.5) x=N+0.5;

i0=(int)x; i1=i0+1;

if(y<0.5) <=0.5; if(y>N+0.5) y=N+0.5;

j0=(int)y; j1=j0+1;

s1=x-i0; s0=1-s1; t1=y-j0; t0=1-t1;

d[IX(i,j)]=s0*(t0*d0[IX(i0,j0)]+t1*d0[IX(i0,j1)]) +

s1*(t0*d0[IX(i1,j0)]+t1*d0[IX(i1,j1)]);

}

}

set_bnd(N,b,d);

}

29

CHAPTER 3. IMPLEMENTATION OF DIFFERENT INTERPOLATION SCHEMES

3.2.1 Bicubic interpolation scheme

We do not implement the bicubic interpolation scheme because the result of the algo-
rithms in [PTVF88] seems to be wrong.

3.2.2 Bicubic spline interpolation scheme

To implement the bicubic spline interpolation algorithm from [PTVF88] it is necessary
to create a function which switches the one-dimensional array to a two-dimensional
array. This is necessary because Jos Stam works with one-dimensional arrays and the
algorithms in [PTVF88] work with two-dimensional arrays.

List. 3.3: Switch array

void swap_array(int N, float *d0, float **s) {

int i,j;

for(i=1; i<=N; i++) {

for(j=1; j<=N; j++) {

s[i-1][j-1] = d0[IX(i,j)];

}

}

}

After small function mentioned as above, we have to rewrite the advection function for
the bicubic interpolation scheme.

List. 3.4: Advection with bicubic splines

void advect(int N, int b, float *d, float *d0, float *u,

float *v, float dt, int interp) {

int i,j;

float x,y,dt0 ,val ,**ya ,**y2a ,*x1a ,*x2a;

x1a = malloc((N+2)*sizeof(float));

x2a = malloc((N+2)*sizeof(float));

ya = malloc((N+2)*sizeof(float));

y2a = malloc((N+2)*sizeof(float));

for(i=0; i<=N; i++) {

ya[i] = malloc((N+2)*sizeof(float));

y2a[i] = malloc((N+2)*sizeof(float));

}

for(i=0; i<=N; i++) {

x1a[i] = i;

x2a[i] = i;

}

swap_array(N,d0,ya);

splie2(x1a ,x2a ,ya,N,N,y2a);

30

CHAPTER 3. IMPLEMENTATION OF DIFFERENT INTERPOLATION SCHEMES

dt0 = dt*N;

FOR_EACH_CELL

x=i-dt0*u[IX(i,j)]; y=j-dt0*v[IX(i,j)];

if (x<0.5f) x=0.5f; if(x>N+0.5f) x=N+0.5f;

if (y<0.5f) y=0.5f; if(y>N+0.5f) y=N+0.5f;

splin2(x1a ,x2a ,ya,y2a ,N,N,x,y,&val);

d[IX(i,j)] = val;

END_FOR

free(x1a); free(x2a);

for(i=0; i<=N; i++) {

free(ya[i]); free(y2a[i]);

}

free(ya); free(y2a);

set_bnd(N,b,d);

}

31

Chapter 4

Evaluation of different
interpolation schemes

Since we do not get a working implementation for the polynomial bicubic interpolation
we discuss only the bilinear interpolation scheme and the bicubic spline interpolation
scheme. We discuss a simple example where the velocity field is constant and we look
at the density. The second example is an analytical example from [FP02].

4.1 Simple wind tunnel

This example shows a simple wind tunnel like in Figure 4.1. On the left hand side of
the wind tunnel there is an inlet and on the other side of the wind tunnel there is an
outlet. The top and the bottom side of the wind tunnel defines a wall. To set the
velocity field constant in the x-direction we have to change the code which is shown in
Listing 4.1.

wall

inlet
wall

outlet

Fig. 4.1: Delineation of the simple wind tunnel

List. 4.1: Set the velocity in x-direction

static void set_velocity() {

int i,j;

for(i=0; i<=N; i++) {

for(j=0; j<=N; j++) {

u[IX(i,j)] = 0.01f;

v[IX(i,j)] = 0.00f;

}

}

}

32

CHAPTER 4. EVALUATION OF DIFFERENT INTERPOLATION SCHEMES

To compare these interpolation schemes we have to select some interesting variables,
which are important for the simulation.

List. 4.2: Interesting variables

N=16; h=1.0f/N; dt=0.1f; diff=0.0f;

visc=0.0f; force=5.0f; source =100.0f;

N means the number of cells in one direction, in that case we have a grid with 16 cells
in x-direction and 16 cells in y-direction. So that Jos Stam assumed in [Sta03] that
the physical length of each side of the grid is one so that the grid spacing h is given
by 1/N . The fixed variable dt assumes the time spacing between two snapshots of the
simulation. It can be set a diffusion value with the variable diff, that means if the
diff variable is 0 there is no exchange with the neighboring grid cells. If the diffusion
is bigger than 0 the density will spread across the grid cells. If the variable visc is 0
there is no viscosity in the grid cells. With the variables force and source you can
adjust the value of the velocity and the value of the density.

Figure 4.2 shows the result with the bilinear interpolation scheme and Fig. 4.3 shows
the result with the bicubic spline interpolation scheme. In this example no significant
differences can be found between these interpolation schemes. It is also shown that
there is no numerical diffusion at the bilinear and the bicubic spline interpolation.

Fig. 4.2: Evaluation of the wind tunnel with the bilinear interpolation scheme

Fig. 4.3: Evaluation of the wind tunnel with the bicubic spline interpolation scheme

4.2 Convection of a step profile

Another popular test case is the convection of a step profile in a uniform flow oblique to
grid lines. The mathematical background and the convergence is described in [FP02].
In Fig. 4.4 we show the profile for the case when the flow is at 45◦ to the grid u = v.
In List. 4.3 we show the implementation of that flow. We have included this popular
test case in our solver and looked at the results which are shown in Fig. 4.5.

33

CHAPTER 4. EVALUATION OF DIFFERENT INTERPOLATION SCHEMES

v

y

x

Fig. 4.4: Convection of a step profile in a uniform flow oblique to grid lines

List. 4.3: Flow of 45◦

static void set_veloctiy() {

int i,j;

for(i=0; i<=N; i++)

for(j=0; j<=N; j++) {

u[IX(i,j)] = 0.01f;

v[IX(i,j)] = 0.01f;

}

}

It is a popular test case in a uniform flow oblique to grid lines. It can be solved with
the central difference scheme (CDS) or with the upwind difference scheme (UDS) which
is described in [FP02]. The boundary conditions on the west and on the south side are
values of φ like in [FP02] and the conditions at north and east are outflow boundaries.
In Fig. 4.5 there is the profile of φ for the test case when the flow is 45◦ to the grid
shown, obtained on a uniform 10 x 10 control volume (CV) grid.

Figure 4.5 shows also like the previous example that there is no numerical diffusion
for the bilinear and the bicubic spline interpolation. In contrast to this two methods,
which do not have any numerical diffusions, the methods which are shown in [FP02]
have numerical diffusion. Figure 4.8 in [FP02] shows the two methods, UDS and CDS,
which do have numerical diffusions.

We can say to the time calculation of these two interpolation schemes in practice that
there is no essential difference between the bilinear interpolation, on the left side of
Fig. 4.5 and the bicubic spline interpolation, on the right side of Fig. 4.5. That these
two interpolation schemes are more or less equal for the time calculation it is only
necessary to look for the accuracy of these interpolation schemes to select the better
one for this application. That the bicubic spline interpolation do not have any numerical
diffusions and the results are more accurate compared with the analytical results, the
bicubic spline interpolation is more appropriate for that application.

34

CHAPTER 4. EVALUATION OF DIFFERENT INTERPOLATION SCHEMES

(a) bilinear interpolation, t = 0 (b) bicubic spline interpolation, t = 0

(c) bilinear interpolation, t = n (d) bicubic spline interpolation, t = n

(e) bilinear interpolation, t = ∞ (f) bicubic spline interpolation, t = ∞

Fig. 4.5: Result of the bilinear interpolation and the bicubic spline interpolation for
different time steps

35

Chapter 5

Summary and outlook

In this thesis we have presented and implemented three different types of interpolations,
the bilinear interpolation, the bicubic interpolation and the bicubic spline interpolation.
The easiest and the quickest interpolation scheme for the implementation was the bilin-
ear interpolation, because this scheme works with less mathematical effort. We can say
that the bicubic spline interpolation is the best interpolation scheme for this applica-
tion because the effort, the calculation time and the accuracy are in a good proportion.
The bicubic interpolation does not work in that case because there is a possibility that
the algorithm from [PTVF88] is wrong. My assumption is that the weight constants
are selected wrong.

If we can make a statement which interpolation scheme is the best for this application,
we probably have to check more than three interpolation schemes for their implementa-
tion, calculation time and accuracy. It will be interesting if the bicubic interpolation is
working because there could also be compared that scheme with the other ones. After
that it would also be interesting to implement other interpolation schemes because after
there will be exposed which interpolation scheme is the optimal interpolation scheme
for that applications.

It will also be interesting to split the interpolation schemes, e.g. at the boundary there
could be applied the linear interpolation scheme and in the central of the simulation re-
gion there could be applied the spline interpolation for more accurate and faster results.
On the other hand there could be implemented cubic spline interpolation schemes for
high-order schemes and the linear interpolation for low-order schemes.

The next possible step will be to implement a backward integration in time which is
called semi-Lagrangian integration for much faster calculation of the density and the
velocity. This semi-Lagrangian scheme comes from the numerical weather review. They
are working with big time steps even though they need exact results for their calcula-
tions.

It would also be interesting to make more practical examples with that interpolation
schemes because in this examples in Section 4.1 and 4.2 there is no essential time differ-
ence between this two interpolation schemes, but it could be if there is a more complex
example there. It is possible that there is more time difference if there are objects in
the simulation region.

In practice such schemes are suggestive for the game industry, e.g. there could be calcu-
lated smoke during the game sequence. The smoke in the game could be calculated just
in time if a figure of the game walks through the smoke. Other application in practice

36

CHAPTER 5. SUMMARY AND OUTLOOK

could be a smoke simulation in buildings or a wind channel where objects could moved
during the simulation and there is shown the result of the smoke or the wind instantly.
An application with that schemes gives a good and fast overview how the smoke or
the wind in a building could move, but for exact calculations there are conventional
CFD applications which could calculate these problems more exact but they need more
computer power.

37

List of Figures

1.1 Conventional process of a CFD calculation 2
1.2 Basic approach of Real Time Fluid Flows 2
1.3 Computational grids in this thesis . 3
1.4 Basic idea behind the advection step . 3

2.1 Four neighboring points for a 2D interpolation 6
2.2 Principle of 1D linear interpolation . 7
2.3 Principle arrangement of the two dimensional linear interpolation 8
2.4 Boundary check for the desired point Px,y 9
2.5 Analytical data of sin(x) · sin(y) . 10
2.6 Bilinear interpolation with a grid size of 4 x 4 11
2.7 Error of the bilinear interpolation . 11
2.8 Bilinear interpolation of a 8 x 8 grid . 12
2.9 Error of the bilinear interpolation of a 8 x 8 grid 13
2.10 Error of different grid sizes . 13
2.11 Calculation time of different grid sizes with linear interpolation 15
2.12 Error and execution time of different grid sizes with the bilinear inter-

polation . 15
2.13 Principle of 1D polynomial interpolation 16
2.14 Polynomial interpolation in two dimension 17
2.15 Definition of the derivative and its approximations 18
2.16 Bicubic interpolation with a 4 x 4 grid of sin(x) · sin(y) 19
2.17 Lagrangian interpolation with N = 3 data points and overshoots 20
2.18 Lagrangian interpolation with N = 3 data points and clipping 20
2.19 Spline interpolation in one dimension . 22
2.20 Bicubic spline interpolation with a 4 x 4 grid of sin(x) · sin(y) 24
2.21 Results of the bicubic spline interpolation with different grid sizes 25
2.22 Error calculation of the bicubic spline interpolation 26
2.23 Error of the bicubic spline interpolation 26
2.24 Calculation time of the bicubic spline interpolation 27

3.1 Visualization of the constant velocity field ~u 29

4.1 Delineation of the simple wind tunnel 32
4.2 Evaluation of the wind tunnel with the bilinear interpolation scheme . . 33
4.3 Evaluation of the wind tunnel with the bicubic spline interpolation scheme 33
4.4 Convection of a step profile in a uniform flow oblique to grid lines . . . 34
4.5 Result of the bilinear interpolation and the bicubic spline interpolation

for different time steps . 35

38

List of Tables

2.1 Calculation of the error of the different grid sizes 13
2.2 Calculation table of linear interpolation for interp 14
2.3 Number of operations of polynomial interpolations 20
2.4 Calculation of the error of the different grid sizes 26
2.5 Calculation time table of the bicubic spline interpolation 27

39

Listings

2.1 Boundary check . 9
2.2 Find nearest neighbours . 9
2.3 Ratio of the 2D linear interpolation . 9
2.4 Two-dimensional interpolation . 10
2.5 2D error calculation . 11
2.6 Error calculation . 12
2.7 Output of the profiler . 14
2.8 Output of the time command . 14
2.9 Centered differencing . 18
2.10 Clipping procedure . 21
2.11 Cubic spline interpolation in one dimension 23
2.12 Bicubic spline interpolation . 24
2.13 Empty function . 27
3.1 vel_step for constant velocity field . 28
3.2 The function for the advection . 29
3.3 Switch array . 30
3.4 Advection with bicubic splines . 30
4.1 Set the velocity in x-direction . 32
4.2 Interesting variables . 33
4.3 Flow of 45◦ . 34

40

Bibliography

[Beh95] J. Behrens. Adaptive semi-Lagrange finite element method for the solution

of the shallow water equation. PhD thesis, December 1995.

[Beh96a] J. Behrens. An adaptive semi-Lagrangian advection scheme and its paral-
lelization, 1996.

[Beh96b] J. Behrens. A parallel adaptive finite element semi-Lagrangian advection
scheme for the shallow water equations, 1996.

[BS92] R. Bermejo and A. Staniforth. The conversion of semi-lagrangian advection
schemes to quasi-monotonic schemes. Monthly Weather Review, 120(2622),
January 1992.

[FP02] J. H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics.
Springer, third edition, 2002.

[FSJ01] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In
Eugene Fiume, editor, SIGGRAPH 2001, Computer Graphics Proceedings,
pages 15–22. ACM Press/ACM SIGGRAPH, 2001.

[Inc06a] ANSYS Inc. Computational fluid dynamics (CFD) software, September
2006. ANSYS Inc. Homepage: http://www.ansys.com.

[Inc06b] Fluent Inc. Computational fluid dynamics (CFD) software, September 2006.
Fluent Inc. Homepage: http://www.fluent.com.

[Ltd06] Open CFD Ltd. Open Source CFD toolbox, September 2006.
Open Field Operation and Manipulation (OpenFoam) Homepage:
http://www.opencfd.co.uk.

[Pop06] Stephan Popinet. Open Source free software library for the solution of the
partial differential equations, September 2006. Gerris Flow Solver Home-
page: http://gfs.sf.net.

[PTVF88] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-

merical Recipes in C. Cambridge University Press, 1988.

[SC91] A. Staniforth and J. Côtè. Semi-Lagrangian integration schemes for at-
mospheric models: A review. Monthly Weather Review, 119(2206), March
1991.

41

BIBLIOGRAPHY

[Sch93] H. R. Schwarz. Numerische Mathematik, pages 94–149. B. G. Teubner
Stuttgart, 1993.

[Sch94] B. Schmitt. Numerik-Skripte 1994 Uni Marburg. 1994.

[Sta03] J. Stam. Real-time fluid dynamics for games. Proceedings of the Game
Developer Conference, 2003.

42

