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Abstract

The Internet is a continuously growing network which reaches more and more areas of

everybody’s life independently of their occupation. In particular the network grew ex-

traordinary in the last two decades and heavily influences the daily business of individuals

and organizations. Data is collected everywhere in a seemingly uncontrolled manner for

many plausible and implausible reasons. Specifically in the last years topics like data re-

tention and surveillance appeared in the public, those affecting individuals in particular.

But traffic monitoring may not influence just individuals. This also covers industrial es-

pionage and might affect even the sovereignty of states when considering surveillance of

governmental or military data exchange.

As a consequence many efforts are undertaken to build so-called anonymizing networks on

top of the Internet, being Tor such a network as an example. Their purpose is to hide the

fact of who is communicating to whom. Technical speaking this means hiding IP addresses

and locations from observers.

The Tor network provides an interface which has to be used in order to gain anonymity.

This interface has some limitations. Although it is possible to setup peer to peer connec-

tions between participants, it does not allow transmission of IP packets directly.

We are looking for a way to make it capable to transport IP packets and create peer

to peer connections between participants in a completely dynamic way, thus creating an

anonymous Internet overlay.

This document gives a sound basis on cryptography, networking, and operating systems

to fully understand the difficulties and possibilities when creating such an overlay. Finally

a solution and a software ready for use is presented in detail.
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1 Introduction

Nowadays, the Internet is used everywhere, in daily business of organizations and com-

panies, regardless of their size. The Internet even found a way into everybody’s private

life.

This is because it provides features which makes many things of daily life more convenient.

It makes it more easy to distribute information. Thus, information is accessible by people

that would not have had access to it before. It also makes many things more transparent.

The transparency and information distribution property boosts the economy. In part,

this is due to competition being increased by those properties previously mentioned. Once

commercial establishment found out that something may increase profit, money is invested.

Thereby the network further grows.

It attracts the interest of more and more people independently of their occupation. It

comes to governments, military, law enforcement, good guys, bad guys, and many more.

The new digital world and the Internet in particular has downsides too.1 Digital informa-

tion may be copied without information loss. Once published in the network, it may be

spread everywhere, many times. And this paragraph is not about copyright violations. It

means every kind of information being published, independently if it was published delib-

erately or not. For example, this includes web pages, emails, or other personal information

of individuals. And information being published once can never be deleted again. It is

preserved on many Internet storages, Google as an example.

Information travelling through the network may be monitored by observers, for whatever

reason. Specifically in respect to the sovereignty of states and diplomatic efforts, informa-

tion leakage may have disastrous consequences. Cryptography is being used to avoid such

cases. Simple methods (from today’s point of view) have been used since ancient times

1It is not being said that permanent growth of economy is an adventage. The reader might decide himself.
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1 Introduction

but specifically the last 50 to 100 years brought many advancements into this field.

But cryptography does not solve all problems. In reality it covers just a small field of

problems which exist in respect to information distribution, although it is used in many

applications. Cryptography hides the content of something being distributed. It does not

hide the fact that communication takes place and who communicates to whom.

With those considerations, a new field of research – the field of anonymity – emerged in the

late 70’s of the last century. A paper about untraceable electronic mail [3] was published

in 1981 by David Chaum, but it can be said that this field got much attraction not before

2000. It does not cover just anonymity. The term “anonymity” in particular is one aspect

of objectives being explored within this field. A list of papers is found in the Free Haven’s

Bibliography [15].

The property that information within the Internet is traceable is used by governments to

monitor their citizens. It is a basic goal of any government to achieve as much control on

their citizens as possible. Nowadays, we are told on one hand that governmental or military

traffic must not be monitored by opponents to preserve the world’s peace, but on the other

hand an individuals traffic should be as transparent as possible, for security reasons. There

are actually discussions about federal Trojans getting installed on individuals computer

systems. This sounds very odd to the author of this paper, hence, the motivation came up

on how to prevent from being monitored while not loosing the network’s freedom, which

existed in the Internet (and also in reality) some time ago.

Several techniques have been developed over the years to prevent information being trace-

able while carried within the network. Tor, as an example, uses one of those techniques.

It is a network based on the Internet which is capable of hiding participants and their

activities. It allows users to resist against traffic monitoring and surveillance. It provides

an application interface, but this has some limitations.

This paper is about creating a completely transparent application interface and building

a network layer with the anonymity property, based on Tor for a start. It can be seen as

an anonymous network within the Internet – an anonymous Internet overlay.

With this, a new network can evolve, providing the same information and flexibility as the

Internet does, with the advantage of anonymity in respect to network addressing.

A network within a network usually is referred to as VPN. It utilizes the same protocols

as are used for the Internet. Thus, all types of services that work within the Internet also

work within such a VPN.

2



1 Introduction

Within this paper it is explained how to create an anonymous VPN, which uses a com-

pletely decentralized approach. This type of approach is usually being referred to as

peer-to-peer networks. As it is true for all types of networks, a method of addressing is

necessary to identify participants. The method of choice provides unique identification but

hides a client’s real identity in respect to Internet addresses.

This document is split into two parts. Part I explains basics on cryptography in Chapter

2 and gives a detailed view on fundamental network protocols in Chapter 3. Chapter 4 is

about operating systems and their interaction with networks. The thoughts covered herein

are based on the Tor network, hence, Chapter 5 is about it and its hidden services.

Part II describes in detail how the anonymous VPN is built. This is covered in Chapter

6. It also includes the description of the addressing method which is crucial for such

a network. Chapter 7 is about a software implementation in general and explains the

implementation of the reference project called OnionCat. Chapter 8 shows some use cases

and gives detailed installation and configuration instructions for OnionCat. The project

was published under the GNU GPLv3 license. Further project documentation as well as the

complete source code and some packages are found at [13] www.cypherpunk.at/onioncat.

During this development several new topics emerged. Those are documented in the last

Chapter 9.

3
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2 Cryptographic Building Blocks

Cryptography has been used since thousands of years to hide secrets from adversaries.

Considering the famous Caesar’s Cipher [39] used by the Roman emperor Julius Caesar

to securely communicate with Cleopatra, Queen of Egypt, as the first documented cipher.

It is a simple substitution algorithm which can easily be broken today even from people

not being cryptanalytic experts.

With further development of human knowledge about mathematics, physics and similar

scientific fields, also the complexity of ciphers signifficantly increased. The Enigma Ma-

chine was a mechanical implementation of a fairly complex algorithm used by the Germans

during World War II. Great efforts had been necessary and were undertaken by the allies

to break the code. But first the Polish later the British were able to break intercepted

messages within hours, at least for the weaker codes [39]. Alan Turing was one of the

mathematicians involved in code breaking.

Since the 1970s really strong algorithms were developed although some of the concepts

used date back several centuries. But the still increasing computational power made things

possible that have not been possible before. This computational power permitted to pick

up older concepts again which were originally dropped because of too high complexity

then.

Cryptography is one of the most fundamental prerequisites for anonymization networks.

In the following I will explain cryptographic building blocks which are widely used today

as far as necessary under this topic. More detailed explanations about cryptography can

be found in [12] and on a much more technical basis in [39].

5



2 Cryptographic Building Blocks

2.1 Encryption and Decryption

The basic idea is that two partners, Alice and Bob, want to communicate secure. That is

that everybody in between – like the eavesdropper Eve – who reads the message cannot

deduce the original meaning of the text. Let’s assume that A and B already exchanged

a “small” secret Ke, further known as the key. A encrypts her message m using an

encryption algorithm together with the key Ke to produce the cipher text c. You can think

of the encryption algorithm as the mathematic function E(m, k) taking two arguments:

the message m and the key Ke. The encryption algorithm applies the secret Ke to the

message in a way that the whole messages turns to be secret.

Figure 2.1: Symmetric encryption.

As shown in Figure 2.1, A calculates c = E(m, Ke) and sends c across an insecure channel.

B receives c and calculates m = D(c, Ke) to retrieve the original message m. The decryp-

tion algorithm removes the secret from the cipher text c. Note that c is not revertable

to m if they either use a different key Ke or c delivered to B is not the same as A sent.

That is, c was altered during transmission and that is the lack of encryption. To detect

modifications of cipher text we need a concept called authentication. See 2.2 for details.

This type of algorithms are called symmetric ciphers, because both parties A and B use

the same key k. Symmetric ciphers are usually very fast compared to their counterparts

the asymmetric ciphers. Symmetric ciphers internally use a very basic set of operations

to accomplish the task of encryption and decryption. Those are simple additions and bit

operations like bit shifting, and boolean operations like AND, OR, XOR, and so on.

Asymmetric ciphers use two different keys. One for encryption and one for decryption.

Those keys are dependent on each other, hence, together they form a key pair. The

“dangerous” one is the decryption key because one who holds it can decrypt ciphered text.

6



2 Cryptographic Building Blocks

Thus, it should be kept secret and is therefore called secret key or more frequently the

private key. The other one – the encryption key – is called the public key. It can be made

public because it can only be used for encryption, but not for decryption and, additionally,

it is not possible to derive the private key from it (but the public key is derived from the

private one). This type of algorithms belong to the field of public key cryptography.

Figure 2.2: Asymmetric encryption.

Figure 2.2 shows the pretty similar picture of encryption with asymmetric ciphers, like

Figure 2.1 does for symmetric ones. Alice encrypts the message m with Bob’s public key

PBob using the encryption function c = E(PBob, m) and sends the cipher text c across the

insecure channel to Bob. He can then decrypt the cipher text c with his private key SBob

using the decryption function m = D(SBob, c).

As it is with symmetric ciphers, Bob cannot detect modifications of the cipher text. Asym-

metric ciphers are slow because internally they use fairly complex mathematics with really

huge numbers which is not a cakewalk even for todays computers.

The big advantage of public key cryptography is that it simplifies the problem of key

exchange.

Those two Figures (2.2, 2.1) from above both assume that the keys are already exchanged.

Once they are exchanged, secure communication across an insecure channel is no problem.

But exchanging keys is really difficult and not sufficiently solved today. Witfield Diffie

and Martin Hellman founded the basic fundamentals of public key cryptography and key

exchange in 1976 with their famous paper “New Directions in Cryptography” [10]. They

developed the DH key exchange protocol1 which is still used today in combination with

public key cryptography for key exchange.

A further concept necessary for building trust relation ships is authentication which is

described in the following Section 2.2.

1Actually it does not exchange keys. It rather generates a key across an insecure channel.

7



2 Cryptographic Building Blocks

2.2 Authentication

Authentication is a concept to prove that something or somebody is authentic. In the field

of digital data transmission that means that you can check if a piece of data that arrived

is as it was before sending. That is, the data was not altered during transmission. With

some limitations it is even possible to identify who sent the data.

Figure 2.3: Message authentication.

Figure 2.3 shows the concept of message authentication. Before message authentication

can take place, again, Alice and Bob have to agree on a shared secret, the message authen-

tication key Ka. Alice can then calculate a message authentication code (MAC) a using

the function a = h(Ka, m) which takes the key Ka and the message m as arguments. Next

she sends the message m together with its MAC a to Bob.

Bob can verify that no modification happened during transmission. He calculates his own

MAC using the same function a′ = h(Ka, m) together with the received message m and

the key Ka that he agreed with Alice. Then he compares if his calculation results in

the same MAC as the one he received: a′ = a. If the comparison evaluates to true, the

MAC was calculated by someone who owns Ka and the message was not altered after

calculation of a. This implies that the message was sent by Alice, if we assume that Ka is

owned exclusively by her (and Bob). If the equation evaluates to false either the MAC a or

the message m was modified, or a was not calculated with the right authentication key Ka.

Now look a little bit more into details of MAC calculation. The message authentication

code usually is a small piece of data in the range of 128 to 512 bits (16 to 64 bytes). But

the message itself could be really huge, for example a file of several giga bytes. Thus, some

kind of data “compression” is necessary. We need a function that projects an theoretically

infinite set of input data into a limited set of output data. This is what hash functions do.

8



2 Cryptographic Building Blocks

Hash functions have a wide range of applications in information technology, but not all of

them are applicable to be used in cryptography. A property of all hash functions is that

they have collisions because of the infinite number of possible inputs but finite number

of outputs. It is called a collision if two different inputs result in the same output value.

Thus they are indistinguishable after hashing.

There is a class of specific hash functions, the cryptographic hash functions [12] whose

collisions are unpredictable. This is that they still have collisions but we are unable to

consciously produce one. Very well known and most widely used hash functions are MD5

(Message Digest Version 5), SHA-1 (Secure Hashing Algorithm Version 1)2, and its newer

versions based on the same algorithm with a greater output set: SHA-256 and SHA-512.

Both, MD5 and SHA-1 are internally based on a similar algorithm. MD5 has a result of

128 bit, SHA-1 results in a 160 bit wide value, SHA-256 in 256 bits, and SHA-512 in 512

bits, obviously.

With those functions we are now able to calculate “fingerprints” of messages by applying

a hash function to the message: dm = H(m). This dm is called a message digest or a

fingerprint of a message. The message digest dm is unique to the message,3 hence, it may

be used as an identifier for the message m. Even if changing a single bit in m, several bits

in dm will change randomly. Of course it is not possible to retrieve the original message

m out of the digest dm.

With this cryptographic hash functions we can create message authentication codes by

simply appending the authentication key Ka to the message m and calculating dm, as an

example. As explained above, without having Ka no one will be able to generate a valid

message digest. Ferguson [12] explains that digests with simple appended keys may be

broken easily and more sophisticated algorithms like HMAC (Hashed Message Authenti-

cation Code) should be used instead.

MACs are based on symmetric cryptography. If we apply the concept of public key cryp-

tography to it, they become digital signatures. It is necessary to use a public key algorithm

which is able to encrypt with the private key and decrypt with the public key. This is

different from what we need for normal encryption as has been described in Section 2.1.

2It is the slightly adapted successor of SHA Version 0.
3As explained above in reality we are not able to find a different message m

′ with d
m

′ = dm. But there

are some approaches to generate collisions. [47]

9



2 Cryptographic Building Blocks

It can be done with RSA or the digital signature algorithm (DSA), as an example. Both

are described in [39].

Figure 2.4: Digital signatures.

The procedure is shown in Figure 2.4 on page 10. Alice calculates a hash value of the

message and encrypts it with her private key SAl. This happens within the digital signature

function s = S(SAl, m). The signature s is sent to Bob along with the message m. Bob

receives it and generates in turn the hash value h′ of the message. Then he decrypts

the signature using Alice’ public key PAl. This results in a hash value h which Alice

originally computed. Bob then compares if h equals h′. All together this is done within

the verification function V (PAl, m, s). It returns true or false. If it is true, he knows that

the message was unmodified and it was signed by Alice. Otherwise either the signature or

the message was altered during transmission. Bob cannot forge Alice’ signature because

s cannot be computed with the public key.

2.3 Summary

In this Chapter I briefly introduced the concepts of encryption. It is used by the Tor

network to hide data from observers. Tor is the anonymizer of choice for this project. I

further introduced the cryptographic mechanisms of hash functions and authentication.

These are used by the hidden services, which are services provided by the Tor network.

They are used as a communication basis for this project.
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I will discuss several fundamental network basics here which are vital for understanding

several mechanisms regarding Tor and this project about building a VPN on top of it.

Network protocols are usually classified using the OSI1 7 Layer Model [42]. As the name

already tells, it is structured into seven layers starting with the physical layer as the lowest,

describing electrical parameters like voltages, currents, frequencies, cables, and so on. The

7th layer describes application behavior, like sending emails. Thus, it is called application

layer. The layers in between deal with various aspects of network communication. One

major property is that those layers are dependent on each other. The higher ones depend

on the lower ones. That is, for example, if layer 3 does not work for some reason then also

the layers 4 to 7 will not work. This is absolute essential.

Figure 3.1 on page 12 is a simplified view of the OSI layer model. It shows only five layers

symbolized as boxes. The lowest at the bottom is layer 1 and represents the physical layer,

as already mentioned. The physical layer ensures to transmit a single bit. The assumption

is, that if one can transmit one bit he can transmit any number of bits. The gray shaded

arrows mean that every lower layer offers an interface to the upper layer. And the upper

layers use those interfaces. These interfaces are well defined and can only be used if the

upper layer knows exactly how they work. That does also mean that, for example, the

transport layer (4) cannot directly use the data-link layer (2), for two reasons. First it

breaks the model because layer 4 shall be based on layer 3 and second, layer 4 does not

“know” the interface of layer 2 – mainly because of the first reason.

Layer 2 is the data-link layer. It makes sure that the virtually endless stream of bits gets

framed which means it forms data structures. The bit stream in reality is not endless.

It is a flow of packets – in layer 2 those are called frames – which have beginnings and

ends. Additionally layer 2 has addressing capabilities. That is of major importance if a

1Open Systems Interconnection
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Laye r s  5 -7

L a y e r  4 ,  T r a n s p o r t

L a y e r  3 ,  N e t w o r k

Laye r  2 ,  Da ta  L ink

L a y e r  1

Figure 3.1: The protocol layer model.

multi-access protocol is used. Different from point-to-point protocols, more than two hosts

can be connected together at the same time on the same physical segment. This obviously

needs some kind of addressing to designate frames to specific hosts – and not to any of

the connected ones.

One of the most widely used and under this topic important layer 2 protocol is Ethernet.

I will discuss the necessary issues in Section 3.2.

Layer 3 is the network layer. It is designed to create logical addressing, do “best” route

selection, and packet routing. It transports several basically independent packets across

a “large” network consisting of several network segments, specifically several layer 2 seg-

ments. They could be of different type, for example one segment could be Ethernet,

another one could be HDLC.2

Logical addressing means network design oriented address assignment. It enables network

designers or administrators to form logical units of hosts in the network, those belonging

together. This is different from layer 2. Its addressing method just has the function to

connect nodes being addressable on one physical network segment. Physical, because it

is based on the physical layer. Logical addressing is user-chosen, hence, we need routing.

Routing is the term for finding a path through a network to a designated destination.3

And if there is more than one path available we need some kind of route selection.

Within this context we use the Internet Protocol Version 6 (IPv6). The reasons why IPv6

2At this point the high-level data-link control (HDLC) is a randomly chosen example for a protocol within

the data-link layer. But it is not of relevance any further so I will not discuss it subsequently.
3Layer 2 has no routing capability because all hosts are connected physically. Thus they can “see” each

other and frames of layer 2 are not intended to get passed over to another different network segment.
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is used will be explained later in Section 6. Mechanisms associated with layer 3 and IPv6

are described in Section 3.1.

Layer 4 is the transport layer. Its ability is to associate packets together thereby forming

data streams, and it provides multiplexing. The latter is the ability to have several different

services running on a single logical layer 3 address. Obviously, the task of multiplexing also

needs an addressing method. Layer 4 addresses are usually called port numbers. There are

many transport protocols available, like UDP or TCP. I will discuss them in Section 3.3.

3.1 The IP Protocol Version 6

The IP protocol belongs to layer 3 – the network layer – of the OSI model. Nowadays,

if the term “IP protocol” is used it usually refers to the IP protocol version 4. It was

developed in the late 70s and published in RFC791 [34] in 1981. Various reasons required

protocol enhancements which led to the IP protocol version 6 which was first published

in RFC1883 [6] in 1995 and was slightly changed and republished in RFC2460 [7] in 1998.

A comprehensive overview of many protocol aspects is given in [26].

Within this context the most important protocol change is the address space. IPv4 has

an address space of 32 bits but IPv6 has 128 bits which is really huge. The reason why

such an address space is needed will be discussed later in Section 6. First the method of

addressing is explained.

←− n Bits −→←− m Bits −→

Network Part Host Part

Figure 3.2: IP address format.

As shown in Figure 3.2, an IP address can be split into two parts, independent of the proto-

col version. The network part is used to address groups of hosts and the host part addresses

the hosts within a specific group. The network part usually is referred to just as the network

or specifically for IPv6 as the prefix. Concatenated, being the prefix the most significant

and the host part the least significant bits, it forms an IP address of length n+m = 128 for

IPv6. The length of the prefix is not pre-defined. It may vary. Thus, it must be specified

13
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when configuring a network device. The notation used is called the CIDR4 notation [16]

and specifies the prefix length with a slash behind the IP address. Generally, the notation

of IPv6 addresses is done in hexadecimal number system as eight 16 bit blocks separated

by colons. As an example, the address fd87:d87e:eb43:938c:6923:402d:6ca3:1777/48 has

a prefix length of n = 48 bits, being the prefix part underlined. The prefix length also

defines the size of a network which is the maximum number of hosts which a network may

contain. Obviously, the size of a network with a given prefix length n is 2m which is 2128−n

for IPv6. For example, a network with a prefix length of n = 48 has a size of 280 ≈ 1024.

A different concept of notation of prefix lengths is the network mask or just netmask. It

is denoted as IP address with all bits of the network part set to one and all bits of the

host part set to zero. It was widely used for the IPv4 protocol but not for IPv6. It is

still mentioned here because those bit masks are useful for the route selection process, as

described below.

IPv6 host address fd87:d87e:eb43:938c:6923:402d:6ca3:1777

netmask (prefix length = 48) ffff:ffff:ffff:0000:0000:0000:0000:0000

logical AND ---------------------------------------

IPv6 network address fd87:d87e:eb43:0000:0000:0000:0000:0000

Figure 3.3: Network address calculation.

Routing is the process of determining to which network interface an IP packet should

be forwarded. That is necessary because a host attached to an IP network might have

more than just a single network interface. The kernel has to decide where to deliver the

packet to, once it arrived (see Chapter 4 for more details on OS interaction). The route

selection is based on a routing table. It usually consists of at least three columns: the

prefix, the prefix length, and a destination. For now, the destination can be considered to

be a physical network interface like an Ethernet interface. The kernel tries to match the

destination IP address of a packet to a route of the routing table. This is done with simple

logical operations. It takes the destination IP address of the packet and applies a logical

AND operation with the prefix length in its netmask equivalent of an entry of the routing

table to it, as shown in Figure 3.3. Then it compares the result with the prefix of the same

entry of the routing table. If the comparison evaluates to true, the route matches and the

4Classless Inter-Domain Routing.
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Prefix Length Destination

::1 128 Loopback

2001:6f8:3c4:1:: 64 Ethernet 0

2001:6f8:3c4:17:: 64 Ethernet 1

fd87:d87e:eb43:: 48 Tunnel 0

:: 0 2001:6f8:3c4:1::1

Figure 3.4: Routing table example.

packet is forwarded to the destination interface of this routing table entry.

A typical routing table is shown in Figure 3.4 on page 15. It contains five entries. The

first one is the local loopback route. It is a host route5 of the address ::1 to the loopback

device. Being a special definition, this address always identifies a host itself from a local

point of view. The second to fourth routes are routes to physical interfaces. The fifth route

is the so-called default route and can be seen as a “catch all” route. This means that any

packet whose destination is not kept within one of the other routes will always match this

one. This is because it has a prefix length of zero, thus the network part of this address

does not exist. It only has a host part with a length of 128 bit which actually matches all

possible hosts. The default route is not physical but logical because its destination is in

turn an IP address, but this is not of real importance here.

←− 32 Bits −→

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

128 Bits Source Address

128 Bits Destination Address

Figure 3.5: The IPv6 packet header.

5A host route always is a route with greatest possible prefix length which is 128 for IPv6.
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Now I will examine the packet header in more detail. As shown in Figure 3.5 on page

15, the IPv6 packet header has a fixed length of 40 bytes and contains eight fields, as

defined in RFC2460 [7]. The version field is always set to 6, the traffic class and flow label

are mainly used for quality of service (QoS) which is not of further importance within

this context. The payload length contains the length of the packet’s payload (the data

body). The next header field is a one-byte value and contains a number which defines the

type of data contained within the payload. As an example, a typical value is 58 for the

Internet Control Message Protocol Version 6 (ICMPv6), which usually is defined as the C

preprocessor macro IPPROTO ICMPV6 in the header file netinet/in.h.6 The hop limit field

prevents the packets having an endless life. Every layer 3 device decreases the hop limit

counter. If the value reaches zero, the packet is dropped.

All bytes of the header are encoded in network byte order which is big endian. This means

that the most significant byte is sent first. This is usually true for all other network

protocols, like Ethernet, IPv4, ICMP, TCP, UDP, and so on.

3.2 Ethernet

Ethernet is a protocol of the data-link layer and is most widely used for local area networks.

Data units of this layer are called frames and in turn this is true for Ethernet. For Ethernet

in particular, several different frame formats are defined. The important one in respect to

this topic is called Ethernet II [42] or also DIX-Ethernet. It consits of a 14 bytes MAC7

header, the payload (the frame body) and a 4 byte checksum field. The latter usually is

checked and stripped off by the network interface hardware, hence, the kernel just receives

the header and the payload.

←− 14 Bytes −→←− 46 - 1500 Bytes −→

Destination MAC Source MAC Type Payload

Figure 3.6: Ethernet II frame.

As shown in Figure 3.6, the MAC header contains three fields followed by the payload: a

destination MAC address, a source MAC address and a type field. A MAC address has 48

6Unfortunately the location of the macro definition may vary from OS to OS. Thus, it is always a good

idea to use the GNU autotools [46] for generating portable source code.
7Media Access Control.

16



3 Networking Basics

bits (6 bytes) and is a unique address, defined by the hardware vendor. The uniqueness

of the address is only of importance within a single physical network segment. This is

because frames (the headers) never traverse layer 3 devices like IP routers. The 16 bits

wide type field defines the type of data contained within the frame. For example 0x0800

is set if the payload contains an IPv4 packet and 0x86dd is used if the payload is an IPv6

packet. Figure 3.6 also shows the payload length with a limited range of up to 1500 bytes.

This limitation actually depends on the capability of the physical layer below and is called

the maximum transfer unit (MTU) size. For 10 and 100 MBit Ethernet this is defined to

be 1500 bytes [42] but it may differ on other physical layers. But for all of them is true,

that the MTU size of the sender and recipient interface must be equal. Thus, it is a good

idea not to change this unless you exactly know what you are doing.

There is no routing mechanism in Ethernet. This requires all hosts to “see” all frames

of the other ones. Thus, they must be connected together in an appropriate manner.

Of course, every host knows its own MAC address. Frames are accepted locally, only if

the destination address matches this own address. Other frames are ignored with one

exception. If the 8th most significant bit is set, frames are always accepted. Those frames

are so-called broadcast frames. In that case also those frames are further investigated. The

process of distinction what to do with such frames depends one several cases. Mostly this

depends on some additional bits of the destination MAC address. This is, if the address

has the value 33:33:xx:xx:xx:xx8 [4] and the type field is set to 0x86DD, it is meant to be

an IPv6 multicast destination which is accepted by all hosts capable of the IPv6 protocol.

In other words, those packets are forwarded to all hosts on the Ethernet because it is

an Ethernet broadcast message but it is only accepted by the IPv6 capable ones. Thus,

they can be considered to be multicast frames, even if Ethernet does not know about

multicasting.9

If two hosts intend to communicate on an Ethernet, they inevitably need to know the

MAC address of its opponent. Nowadays, every host is assigned an IP address to. But IP

belongs to the network layer which is layer 3. Thus, they additionally need to be able to

form layer 2 frames, as a protocol dependency, because layer 3 packets are encapsulated

8Similar to IPv6, MAC address notation is done in hexadecimal numbers of six groups of bytes separated

by colons. The ’x’ means any value.
9Different from broadcasting, the term multicasting referres to an addressing mode which just targets a

group of specific hosts but not all available ones.
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within layer 2 frames. This was explained at the beginning of Chapter 3. Even if they

know the opponents IP address they will not be able to form valid frames because they

usually will not know the desired MAC address. Hence, they need a way to determine

those MAC addresses. This is what the neighbor discovery protocol (NDP) is good for.

This is described in the following Section 3.2.1.

3.2.1 The IPv6 Neighbor Discovery Protocol

The neighbor discovery protocol addresses different problems. RFC2461 [29] says the

following:

“IPv6 nodes on the same link use Neighbor Discovery to discover each other’s

presence, to determine each other’s link-layer addresses, to find routers and to

maintain reachability information about the paths to active neighbors.”

Within this context just the second objective is of importance: determining an opponent’s

link-layer address. The reason for that was explained in Section 3.2.

The NDP is an extension to ICMPv6 and this in turn is carried within IPv6 (see Section

3.1). Briefly explained, ICMP enhances traffic flow in an IP network by exchanging control

information about network states.

←− 8 Bytes −→

Type Code Checksum Data

Figure 3.7: ICMPv6 message format.

The ICMPv6 message format is rather simple, as shown in Figure 3.7. It is an 8 byte

message with four fields. The type defines the type of message and the code field may

be considered to be an extension to the message type. This means that some messages

have the same type but are differentiated further by the code field. The checksum allows a

recipient to verify if transmission errors occurred and the data field may contain additional

information dependent on the type. Note, that some messages may have additional data

or specific options appended. Thus it is vital to check if the payload length of the IPv6

header is greater than the length of the ICMPv6 header. In that case it has options.
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Neighbor discovery means finding the corresponding link layer address10 to a known IPv6

address. This is done by sending out a neighbor solicitation message using an ICMPv6

packet. The source IP address of the IPv6 header is set to the address of the sender,

the destination IP address is set to a specific multicast address. This is FF02::1:FFxx:xxxx

where ’x’ is replaced by the least significant three bytes of the IPv6 address of the desired

receiver. This is necessary because the receiver’s MAC address is unknown, hence, the

destination MAC address of the Ethernet frame must be an Ethernet broadcast message,

more specifically an Ethernet broadcast with IPv6 multicast destination, as has been

explained in Section 3.2. This is 33:33:xx:xx:xx:xx being ’x’ the lowest four bytes of the IPv6

address of the desired receiver. The ICMPv6 message is of type ND NEIGHBOR SOLICIT11

(=135). To the ICMPv6 header always the complete 16 byte IPv6 address of the desired

destination is appended. Behind that, usually a single option is appended. It is a neighbor

discovery options header. The header consists of two single one-byte fields. The first

contains the type of option which is ND OPT SOURCE LINKADDR (=1) in this case. The

second contains the length of the option in multiples of eight. In this case it is set to 1,

which means 8 bytes. The option data behind the option header contains the MAC address

of the sender. The MAC address just has 6 bytes. If this option is the last one, the missing

two bytes may be omitted. The payload length of the IPv6 header must contain the actual

amount of bytes of the packet.

After the message is compiled it is sent to the Ethernet. If the desired receiver exists it will

receive it because it is a broadcast message on layer 2 and an appropriate multicast message

on layer 3. The recipient identifies itself by checking the IPv6 address contained in the

message behind the ICMPv6 header. In turn it will respond with a neighbor advertisement

message.

The advertisement looks very similar to the solicitation with some differences. First, the

message isn’t a broadcast/multicast message anymore. The destination MAC address of

the response contains the MAC address of the sender of the solicitation as well as the desti-

nation IP address is the one of the solicitation sender. The source addresses are those of the

advertisement sender. The ICMPv6 type is set to ND NEIGHBOR ADVERT (=136) and

the additional data field of the ICMPv6 header contains the flag ND NA FLAG SOLICITED

(=0x40000000) which means that this message is sent in response to a solicitation. The

10On an Ethernet this is a MAC address.
11On Linux this is defined in the C header file netinet/icmp6.h.
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IP = 1234:5678:9ABC::10
MAC = 00:1B:24:3A:C5:4F

IP = 1234:5678:9ABC::201
MAC = 00:50:56:9A:21:18

Ethernet

1 Solicitation

2 Advert isement

BA

Figure 3.8: Example of a neighbor discovery process.

ICMPv6 header is followed by the IPv6 address of the advertisement. Behind that, the mes-

sage might be followed by an option. In this case it is the option ND OPT TARGET LINK-

ADDR (=2) with the length field set to 1. Behind the option header the MAC address of

the advertisement sender follows.

Figure 3.8 on page 20 shows a simple example of a neighbor discovery process. There are

two hosts A and B. A would like to communicate with B, but A does not know the MAC

address of B, but only B’s IPv6 address. Thus it needs to send out a neighbor solicitation

first. B will receive it and will respond with a neighbor solicitation message. Appendix A

on page 83 contains two example messages and gives in turn a little bit more explanation.

3.2.2 IPv6 Header Checksum

The calculation of the IPv6 header checksum is a little bit different from what we know of

IPv4. This is because the IPv6 header does not contain a checksum as shown in Figure 3.5

on page 15. The missing checksum is a performance improvement compared to the older

protocol version. This is because the IPv6 as well as the IPv4 header both contain the

hop limit field which must be decreased by every layer 3 device when forwarding packets.

But decreasing means modifying the header which renders the checksum of IPv4 invalid.

Thus, all layer 3 devices are forced to additionally recalculate the header checksum for all

version 4 packets.

Obviously, the missing checksum would decrease the detectability of transmission errors.

This is circumvented by including parts of the IPv6 header information into the checksum of

encapsulated protocols like ICMPv6. Including the full header would destroy performance

gain because of the hop limit field, hence, a special pseudo header is defined for this purpose

in RFC2460 [7]. The pseudo header contains the source and destination IP addresses,

the payload length, and the next header field. For checksum calculation, this header is
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prepended to the IPv6 packet’s payload instead of the original IPv6 header.

The algorithm for checksum calculation is a 16 bit one’s complement and is defined in

RFC1071 [2]. It is the same algorithm as it is used for IPv4. An interesting and very

important aspect of this algorithm is that it is immune against changing endianess.

3.3 Transport Protocols

Transport protocols are based on layer 3 which means they are located at layer 4. This

also means that it makes no difference for a transport protocol if it is based on IPv4 or

IPv6. According to Tanenbaum [42], transport protocols have at least two objectives:

multiplexing and creating sessions.

Multiplexing gives the possibility to discriminate between several services on a host. This

is necessary, because with an IP address usually a host is identified, but this host may

run more than just one service. This distinction is done within layer 4 and is another

method of addressing. Most layers have specific methods of addressing and they usually

vary from one protocol to another one within the same layer. As explained in the previous

sections, addressing on layer 3 is done with IP addresses for the IP protocol and with MAC

addresses for the Ethernet on layer 2. Specifically for the transport control protocol (TCP)

[35] and the user datagram protocol12 (UDP) [33] the addresses are called port numbers.

These two protocols belong to layer 4. Port numbers are 16 bit values. Thus, they range

from 0 to 65535.

Building session means creating virtual circuits.13 This is different from just sending sole

packets because packets in a network may get lost. A session is a communication channel

which seems to be reliable, although it is still based on packets. This means that such

protocols that establish sessions must keep track which packets did arrive and which did

not, thereby resending lost packets.

TCP is capable of multiplexing and creating sessions. It has several handshake mechanisms

and uses programmable retransmission timers. The session that TCP virtually creates is

a stream of bytes. Applications accessing TCP streams14 usually do not “see” or “know”

about packets any more. This is similar to files: bytes are read and written sequentially

one after the other. Obviously, TCP sessions have two ends: the writer end (the sender)

12The next header value of the IPv6 header is 6 for TCP and 17 for UDP.
13Some aspects of virtual circuits will be discussed later in Section 3.4.
14Obviously, access to TCP sessions is done from above layer 4 which are the layers 5 to 7.
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and the reader end (the receiver).15 A nature of TCP sessions is that the most atomic data

unit visible to the upper layers is one byte. This implies that blocks of bytes transmitted

by one atomic operation on one end must not necessarily arrive at the recipient as the same

block. TCP may split this up into smaller parts or may concatenate it with other blocks

that have been transmitted before. It is absolute vital to not rely on specific application

built data units, if they are greater than one byte.

Different from TCP, UDP does not create sessions. It only provides multiplexing. Because

of the missing session feature, data units are sent as they arrive from any application. This

implies that they arrive on the receiver end in exactly the same block size. There is no

such thing like byte streaming as it was explained for TCP before. Because of the missing

session creation, there are also no handshaking mechanisms regarding packet delivery.

That means that there is no guarantee that packets really will arrive. Packets may get

lost in networks. If using UDP, the applications must keep track on data transmission

integrity (as far as necessary).

3.3.1 The SOCKS Protocol

TCP establishes an end-to-end communication, usually based on IP. This requires that

the IP packets between two communication endpoints can flow bidirectionally without

any barrier.16 Nowadays, it is the normal case that firewalls are applied in many places.

Firewalls filter IP packets based on a set of rules. This avoids usual packet flow, hence,

TCP sessions might not get established. Obviously, that is the whole purpose of a firewall.

But in some cases some users should still have TCP access to some servers which others

should not have. This may be accomplished by adding specific rules to the firewall for

those users. But this only works if the destinations are static and do not change, but it

does not work if the destinations are dynamic which means they are not known in advance.

Therefore the SOCKS protocol [24] was designed. SOCKS is a simple protocol for proxying

TCP sessions and it has limited support for authentication. A SOCKS service is usually

run on a firewall or similar gateway to the Internet.

The client establishes a TCP session to the SOCKS server and sends a SOCKS request

message. This message contains the desired remote destination IP address and port number

15Actually sessions have four ends, because they are bidirectional. This means that every communication

partner can send and receive data.
16Of course this is also true for UDP.

22



3 Networking Basics

and an identifier. The SOCKS server uses the identifier to authenticate the client. This

means it looks up the identifier in a database and checks if the client has permission to

access it. Then the SOCKS server in turn opens a TCP session to the destination contained

in the SOCKS request message. After the session is established it sends a SOCKS response

back to the client. Thereafter all data is forwarded transparently between the client and

the destination endpoint by the SOCKS server in both directions.

This protocol was slightly extended in version 4a [23]. It allows that the request message

might also contain a hostname instead of an IP address. This is useful if the client is not

able to do DNS lookups himself. The SOCKS server will resolve the hostname to an IP

address before establishing the external TCP session.

3.4 Virtual Private Networks

One of the most generic definitions is found in [22]:

“A Virtual Private Network is a network of virtual circuits for carrying private

traffic.”

I will refine and explain these terms more specifically. Virtual circuits are connections

between nodes. Those connections do not exist physically, but virtually. TCP sessions,

for example, could be seen as virtual circuits (see also Section 3.3). While browsing the

web, a connection between the local computer and the webserver seems to exist but this

is just a virtual connection. Of course, those two are not connected physically. But still

the connection carries some information, as it is the case for web pages.

What Kosiur ([22]) further says is that those circuits carry private traffic. This does not

necessarily mean that the traffic is always personal or secret to somebody. This might be

the case but it is not a must. In some cases those connections could carry both types of

information – secret and non-secret – and very often it is only a matter of definition what

is private and what is not.

Many VPNs share a similar concept, which is carrying traffic of a specific type across a

network of the same type. In most cases, VPN applications like the Microsoft VPN, Cisco’s

VPN and OpenVPN carry IP packets. Usually they achieve the same goal, which is to

access some kind of “private” network. A prime example would be a company’s internal

network. It is designed to work for people who have Internet access. Obviously, Internet

23



3 Networking Basics

Layers 5-7

Layer 4, Transport

Layer 3, Network

Layer 2, Data Link

Layer 1

VPN

(a) Insertion of the VPN layer.

Layers 5-7

Layer 4, Transport

Layer 3, Network

Layer 2, Data Link

Layer 1

Layer 3, VPN

(b) The VPN layer enrolled.

Figure 3.9: VPN intermediate layer.

is based on the Internet Protocol (IP). Thus follows that those types of VPNs carry IP

packets within IP packets. Expressed in a different way, IP packets get encapsulated within

IP packets. Figure 3.9 on page 24 shows a simple diagram of how VPNs fit into the OSI

layer model.17

The Figure highlights three layers. Ethernet is contained within the data-link layer. Usu-

ally we carry IP within Ethernet, hence, IP is one layer above in the network layer. On

top of IP we have protocols, such as TCP and UDP, and categorize them into layer 4 –

the transport layer.

If a VPN is in use, IP is encapsulated into IP and not, for example, TCP into IP as the

layer model suggests. Thus, from an architectural view, it inserts a second IP layer. That

is what Figures 3.9(a) and 3.9(b) depict. Above layer 2 the VPN layer follows, which

might also be IP. On top of that layer an IP layer follows. In Figure 3.9(a) it is shown

where the VPN layer is inserted, while in Figure 3.9(b) you see the same but being the

VPN layer graphically enrolled.

If a VPN is implemented, there is always some kind of VPN layer. The VPN layer creates

the virtual circuits. The difference between various VPNs is where they insert the VPN

layer in respect to the OSI model. Figure 3.9 gives just an example of encapsulating IP

within IP, but it is also possible to encapsulate TCP within TCP or UDP. Then the VPN

layer would be located one layer above.

What one might also associate when thinking on VPNs is encryption. But this is not what

makes up a VPN, even if most VPNs provide encryption. The most fundamental issues of a

VPN was explained above. But with insertion of a VPN layer, additional data encryption

17See the beginning of Chapter 3 for more details on the OSI model.
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may simply be included within it. At one end of the VPN communication packets get

encapsulated into the VPN layer and encrypted. At the other end data is decrypted and

unwrapped from the VPN layer. The VPN participants do not “see” neither the VPN

layer nor the encryption.

Because of the higher speed of symmetric algorithms as it was explained in Section 2.1,

they usually get used in that application. This implies a need for key exchange in advance.

Several different methods are available and often depend on the actual implementation. To

anticipate regarding the project documented here, encryption is not used explicitly. This

is because part of the VPN layer being used already does encryption and key exchange.

This will be described in detail in Section 5.2, respectively.

3.5 Summary

In this Chapter I gave an overview on the OSI layer model and described several protocols

of its lower layers. Those are Ethernet and IPv6. Ethernet creates a basic connection

between hosts and IPv6 is capable of forming logical network groups. Some protocol

details have been explained about the interaction between Ethernet and IPv6. This is the

neighbor discovery protocol (NDP). It associates link layer addresses with network layer

addresses. A brief overview about transport layer protocols was given, TCP in particular,

because it is used as a transport for this project.

The SOCKS protocol was discussed. It is used for proxying TCP sessions.

Based on those protocols, virtual private networks (VPNs) are implemented. Being VPN

one of the major aspects under this topic, it was explained thoroughly.
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This Chapter shall clarify the flow of packets, IP routing, and the required interfaces in

respect to the operating system (OS). It is not about kernel or OS architectures.

In the following I will often use the term kernel, although from a computer science point

of view its use is not perfectly correct here. According to Stallings [40], the kernel is

the innermost part of an OS. Different architectures exist in respect to the functionality

and size of a kernel, and which parts of an OS are actually implemented in the kernel,

and which parts surround it. Different from most Unix OSes, Windows for example, uses

a micro kernel architecture. Most parts like the TCP/IP stack (see below) are located

outside this “small” kernel. But this makes no real difference under this topic, hence, I

will still use the term kernel beyond this paragraph, consciously that it is not completely

true for all OSes.

Laye r s  5 -7

L a y e r  4 ,  T r a n s p o r t

L a y e r  3 ,  N e t w o r k

L a y e r  1

Appl ica t ion

O p e r a t i n g

S y s t e m

K e r n e l

D r i v e r s

H a r d w a r e

Laye r  2 ,  Da ta  L ink

Figure 4.1: The operating system in the OSI model.

To understand which tasks in respect to networks an OS accomplishes, first, the layers in

respect to the OSI model (see Chapter 3) into which an OS fits, need to be defined. More

specifically, this is about the kernel of an OS. Figure 4.1 gives a brief overview. It is a

simplified picture of what is found in [40]. Layer 1 is the physical layer, thus all parts of

it are usually implemented in hardware like, for example, a network interface card. Layer
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2 may be implemented in hardware as well as in software. Nowadays, parts of it are done

in hardware but allow software interaction. This means it is completely programmable

or may solely be done in software. Software that deals with hardware in that way is a

low-level module from a software architectural point of view. Those modules are usually

referred to as device drivers or just drivers and are always part of the kernel. Layer 3

and 4 which contain the IP protocol, the IPv6 protocol, ICMP(v6), the TCP and UDP

protocol (see Chapter 3), and others, are usually also part of any network enabled kernel.

The module which implements those protocols is referred to as TCP/IP stack.

All layers above 4, these are layers 5 to 7 are implemented in applications. Every software

running outside the kernel is referred to as userland or user space applications. Those

running in userland have many restrictions compared to the kernel. For example, they are

unable to access the hardware directly. Thus, the kernel offers an interface to userland

applications. This interface allows software to access lower level functions of a computer

system under the control of the kernel. This usually implies that the kernel deals with

misbehavior of applications or rejects any invalid use of this kernel interface.

Typical applications are web browsers, editors, shells, but also web servers or anonymizers,

like Tor, OnionCat, or I2P.

Kernels provide several interfaces to userland applications. A traditional way to access

the kernel is to use specific function calls. They are called system calls and are low level

calls, usually based on C functions with stack-passed1 parameters.

System calls can be grouped together dependent on their functionality. One group of

functions is dedicated to socket operations. Socket operations access the TCP/IP stack

of the kernel. As already mentioned, all layers below 5 are part of the kernel, hence, an

application may access a TCP-based byte stream (see Section 3.3) but it will not be able to

create IP packets and send it to the network through the hardware. This is because of two

reasons: first, userland applications are not allowed to access the hardware directly, which

means they are not able to access it, under no circumstances.2 Second, the socket interface

provides only a limited way or even no way to access the network layer, depending on the

type of operating system being used. If such access exists as it does on Linux, it bypasses

the routing process. Packets arriving are directly passed from a network interface to such

1The stack is a temporary memory space for programs. It is mainly used for passing function parameters,

return values and intermediate operation results.
2This is true if we assume that there is no software bug within the kernel code.
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a socket, and from the socket to the network interface. On Linux such a socket may be

created by using the address family AF PACKET.

Various other kernel interfaces exist. On Unix-like OSes a widely used way to access kernel

structures are character devices. Those are special files which virtually reside within the

file system, most commonly in the /dev directory. But actually they are interfaces to the

kernel and not to data on a hard disk. They can mostly be opened, closed, read, and

written, like regular files, even by using the same system calls. Special about character

devices is the structure of the content of data that is read or written. This is because

they are used to control some kind of kernel feature. One of those devices is the tunnel

device. It gives access to the layer 3 including the routing process, or even to layer 2. This

device is a major building block for VPNs, hence, it is explained in the following Section

4.1 separately.

At this point, it is essential to know that Windows does not have such kind of kernel

interface. Access to the kernel is mostly done using system calls. Furthermore, there is

no tunnel device available in that kind as explained above. For those reasons it cannot be

accessed through a character device. The tunnel device must be implemented as a driver.

This is done using the user-mode driver framework which appeared in Windows XP. A

user-mode driver can then be accessed like a file through Windows’ character-device-like

file system with regular system calls. This will be explained in Section 4.2.

4.1 The Tunnel Device

A tunnel device gives access to the layer 3 or layer 2 of the OSI model. On Unix-like

operating systems the tunnel devices is implemented using a character device. Thus, the

userland interface is still above layer 4. But the other end of the device is attached to the

kernel’s routing process. That is, the device, or the tunnel driver rather, delivers packets

directly out of the routing process to the userland, back and forth.

Figure 4.1 on page 26 gave an overview of how an OS fits into the OSI model. Figure 4.2 on

page 29 now shows a more detailed view of the kernel internals. At the bottom are shown

the network device drivers and the network devices. In this picture, as an example, an

Ethernet device which is connected to a network switch and a PPP3 device connected to a

3The Point-to-Point-Protocol is oftenly used for low bandwidth network uplinks, like digital subscriber

lines (DSL) or mobile connectivity.
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Figure 4.2: Tunnel device integration into the kernel.

modem (the telephone icon). The third gray shaded device shows the tunnel device. The

notable fact of this device is, that it is connected back to the kernel’s userland interface

and not to some physical device.

Those devices are usually operating on layer 2, from a software point of view. All frames

received are decoded and the payload is unwrapped. The payload usually carries a layer

3 packet. Dependent on the payload’s protocol type the packet is forwarded to the ap-

propriate routing process. This means that every layer 3 protocol has its own routing

process, in case the protocol supports routing at all. But this is true for IP and IPv6.

The routing process makes decisions where to forward packets based on a routing table

as it was explained in Section 3.1. Since the routing process has a top and a bottom end,

it may forward packets either back downwards to another (or the same) network device

or upwards to the TCP stack. The routing process and the TCP stack form together the

TCP/IP stack, as it ways explained in the introduction to the OS Chapter 4. If it is sent

to the network device, the layer 2 information is recreated and then it is sent (layer 1). If

it is delivered upwards it is unwrapped again because the TCP stack operates on layer 4.

The picture just shows the term TCP stack but actually this kernel module handles UDP

as well as other layer 4 protocols. This modules handles all layer 4 information and hands

over payload information in an appropriate way to the sockets & I/O interface. At this

interface, userland applications can receive data from and send data back to.

Figure 4.3 on page 30 shows packet flow examples. These are the two bold arrows. The

one shows a packet arriving on the Ethernet and leaving again on the PPP device. This
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Figure 4.3: Packet flow in respect to the tunnel device.

is due to a routing table based decision of the routing process. The second packet also

arrives on the Ethernet device but exits again on the tunnel device. This also happens due

to a routing process decision. That is, a packet entering the tunnel device from the top

(referring to Figure 4.3) has already been routed. And further, the packet will be delivered

to the userland, but not through the TCP stack. As explained before, delivery is done by

a character device. As a matter of fact that the packets do not traverse the TCP stack,

they arrive at the character device as is, in their raw condition.

This work flow is bidirectional, meaning that a packet delivered to the tunnel device by

writing to the character device will be delivered further to the routing process. This implies

that, first, the packets must be well-formed because there is no intermediate layer like the

TCP stack and, second, the packet will be routed. This in turn means that the routing

process makes a decision based on its routing table before the packet is forwarded. It

also implies that, if there is no entry for the desired destination, then the packet will be

dropped and an ICMP error message is replied.

The bottom end of the tunnel device is connected to the userland, as has been said before.

But from a software modularity point of view it acts like, for example, the Ethernet device.

On the top end is the routing process of the kernel, on the bottom end may other devices

be connected. In case of Ethernet this is a hub, or a switch,4 or another host directly.

Again, connected to those are Ethernet devices from other computer systems. This figure

is true for the tunnel device, too. The well-formedness relates to the packet format that

4Hubs and switches are Ethernet distributors. They enable several nodes to be connected to a single

physical Ethernet segment.
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the routing process on one end and the connected devices on the other end of the tunnel

device expect.

At least all Unix-like OSes provide a tunnel device which may operate in two different

modes:

• TAP mode is a real Ethernet emulation device implemented in software. It expects

that devices attached to it at the bottom by the character device act like real Ethernet

devices. That is, they are requested to send and receive layer 2 frames with all

requirements that Ethernet has. This includes, for example, neighbor discovery

capability for IPv6 devices. TAP mode can be seen as an Ethernet emulation device

implemented in software.

• TUN mode is a mode which acts at one layer higher than TAP mode. This is layer

3. This implies that there are no layer 2 protocols like NDP, hence, it is always a

point-to-point connection in respect to layer 2. This means that, different from TAP

mode, always just a single device may be attached. Layer 2 is completely missing.

←− Tunnel message −→

←− Ethernet frame −→

←− IPv6 packet −→

Tunnel header Ethernet header IPv6 header IPv6 payload

Figure 4.4: Tunnel device message format.

The tunnel device has a specific message format as shown in Figure 4.4. The total message

size depends on the MTU size (see Section 3.2) of the tunnel device. To be as much

compatible to Ethernet as possible, the MTU size of all5 tunnel devices defaults to 1500

bytes. This does not include the tunnel header. The tunnel header is a 4 byte integer

value, thus, the total tunnel message length is 1504 bytes when using the default MTU

size. As already mentioned in Section 3.2, it is not a good idea to change the MTU size

because it would break the interoperability. Devices with different MTU sizes will not

be able to communicate properly. The Ethernet header is based on the Ethernet II type,

5To be more precise, I am talking of all tunnel devices that have been observed. Those include Linux

kernels 2.6.18 to 2.6.27, FreeBSD kernels 6.3 to 7.0, OpenBSD 4.3 to 4.5, MacOS X 10.4 and 10.5,

SunOS 5.10, and WindowsXP based on the OpenVPN TAP driver 2.1.
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// fd i s an i n t e g e r con ta in ing a v a l i d f i l e d e s c i p t o r

// o f the open tunne l charac t e r dev i c e

int prm = 1 ;

i f ( i o c t l ( fd , TUNSIFHEAD, &prm) == −1)

log msg (LOG EMERG, ” could not i o c t l :TUNSIFHEAD: %s” ,

s t r e r r o r ( errno ) ) ,

e x i t ( 1 ) ;

Listing 4.1: Activating the tunnel header.

hence, its length is 14 bytes. The IPv6 header has a fixed length of 40 bytes. Thus there

are 1446 bytes left at a maximum for the IPv6 payload.6

The difference between TUN and TAP mode in respect to the tunnel message format is

that the Ethernet header is missing.

The tunnel header is a specific integer value in network byte order (big endian) which may

help identifying the payload of the tunnel message. Unfortunately, this differs completely

on every operating system that have been investigated. On Linux it defaults to ETHER-

TYPE IPV67 which is 0x000086DD. On the BSD based OSes (this includes FreeBSD,

OpenBSD, and MacOS X) it defaults to the value of the socket’s IPv6 address family

macro AF INET6.8 The integer value of the macro differs even within those OSes. For

example on FreeBSD it is 0x0000001C, on OpenBSD it is 0x00000018. Thus, it is strongly

recommended to use the literal preprocessor macro rather than one of those integer values,

to make the code more portable.

As a further pitfall, the tunnel devices are configurable in several ways and also this differs

on most OSes. Some of them offer to activate or deactivate the prepended tunnel header,

some others are able to change the behavior of the tunnel header. For writing portable

code it might be a good idea to configure all tunnel devices to behave in a similar way.

This is, activating the 4 byte tunnel header as explained before. This is done by issuing an

I/O control command using the system call ioctl(). On Linux and OpenBSD the tunnel

header is on by default, on FreeBSD and MacOS X this is done with the low level command

TUNSIFHEAD, as shown in Listing 4.1.

6Of course, the tunnel device is capable of receiving IPv4 packets, too. But for a specific reason which is

explained later in Section 6, we do not bother with version 4.
7It is defined in net/ethernet.h.
8It is defined in sys/socket.h.
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struct i f r e q i f r ;

memset(& i f r , 0 , s izeof ( i f r ) ) ;

// use tap i s s e t to 1 i f TAP mode shou ld be used

i f r . i f r f l a g s = use tap ? IFF TAP : IFF TUN ;

strncpy ( i f r . i f r name , ” tun0” , IFNAMSIZ ) ;

i f ( i o c t l ( fd , TUNSETIFF, (void ∗) &i f r ) == −1)

log msg (LOG EMERG, ” could not s e t TUNSETIFF: %s ” , s t r e r r o r ( errno ) ) ,

e x i t ( 1 ) ;

Listing 4.2: Setting TUN/TAP mode on Linux.

The character device is opened with a simple call to open(). The location of the device is

OS dependent, too. On the BSD based OSes it is usually located at /dev/tunx for opening

a device in TUN mode and /dev/tapx for opening it in TAP mode, where x is an integer

number starting with 0. The device is opened exclusively which means it can be opened

only once. On Linux it is located at /dev/net/tun and it is a clone device. This means it

can be opened more than once and enumerates the actual network device automatically.

It results in being every device opened exclusively, too. In the latter case there is no such

thing like a TAP character device, hence, configuring TUN or TAP mode must be done by

issuing the I/O control low level command TUNSETIFF. This introduces a little bit more

work as shown in Listing 4.2.

Once the device is opened and set up correctly, an IPv6 address may be assigned to it

and configured as being “up”. This might be done using the ifconfig9 system command on

Unix, or netsh on Windows. Once an IP address is assigned, the kernel will add at least

one entry into its routing table, but usually two.

The first one is a route to the whole prefix with the tunnel device being its destination.

Thus, all packets entering the routing process, having an IP destination address which is

included in the new route, will be delivered to the tunnel device. This was explained earlier

in this Chapter at Figure 4.3 on page 30. Conversely, packets sent to the tunnel device

from userland through the character device are forwarded to the routing process before

they are delivered further. Again, this means that the routing table is applied before. If no

routing entry exists for the desired IP destination, packets are dropped and replied with

and ICMP error message.

9Look at the appropriate man page for the correct syntax. Some examples are given in Chapter 8.
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The second new routing entry will be a route to the local loopback device for the newly

assigned IP address. This is done for two reasons. First, it avoids that packets being

designated for the host itself are delivered to the tunnel device. Locally assigned addresses

are always designated for the host itself, hence, those packets must be kept locally and not

sent out again. Second, because of the first reason, the routing process needs some way to

determine which packets are destined for the host itself. Again, this is done with a route

for the desired IP address to the local loopback device.

The loopback device is very similar to the tunnel device. Its bottom end (referring to Fig-

ure 4.2 on page 29) is connected not physically but OS internally, namely to the TCP/IP

stack.10 In other words, it ends within the kernel, and not within the userland, as it is

true for the tunnel device.

All OSes make sure that a tunnel message is read at once, and only once, and that the

message is read completely. Thus, the read buffer provided by the application shall be

large enough. At the default setting this is 1504 bytes. If the buffer is not large enough

the OS will try delivery it as a whole again at the next read. Sequential partial reads

are therefore impossible. This applies also for writes. Tunnel messages must be written

at once at a whole, including the correct tunnel header. Thus, the tunnel device may be

considered as a packet stream. Of course, the written message must be well-formed. If this

is not the case, the character device would still accept the message but will drop it later

as a consequence.

Using TAP mode means that the data-link layer exists. This implies that designating

messages to another node requires not just the knowledge of the IP destination address

but also its link-layer address. This is a MAC address for Ethernet (see Section 3.2). It is

also true for the TAP device because it is an Ethernet emulation device.

MAC addresses are usually not known in advance, thus, neighbor discovery is used as it

was explained in Section 3.2.1. This implies that, if a software device is connected using

a tunnel device in TAP mode, it then must provide neighbor discovery capability. This is

true in case the software device should act as an end node like, for example, a computer

connected via Ethernet. It is not true for intermediate devices like hubs or switches, even

if implemented in software.

10For simplicity, the loopback device is completely missing in Figure 4.2. As has been explained, it is

located between the routing process and the TCP/IP stack.

34



4 Operating System Interaction

4.2 A Tunnel Device for Windows

A userland (user-mode) driver for a tunnel device exists. It was implemented by the

OpenVPN project [32] and works on Windows XP and the newer releases also on Windows

Vista. It provides an interface to the routing process on one end and to the userland on the

other end. This is very similar to that what have been explained in the previous Section

4.1. Thus, everything applies as said before with a few differences.

Windows uses the registry to store all kinds of system settings. Thus, also device drivers

are registered there. The access to the driver from userland is done using the device file

system of Windows. Similar to Unix, Windows maintains a naming hierarchy where all

kinds of files (pipes, devices,. . . ) can be found, starting at the root ’\\’. Windows exposes

special files, like devices, at the path ’\\.\Global\<deviceID>’.11

Once the OpenVPN TAP driver is installed, it can be accessed through the Windows API.

This is done by the following steps.

1. Locate the driver in the registry.

2. Retrieve the device ID.

3. Open it through the device namespace.

4. Assign an IP address.

5. Add a route to the routing table.

6. Read/write data.

Locating the driver in the registry is done by opening the appropriate registry directory

and iterating through it until the desired entry is found. All network drivers are stored in

the HKEY LOCAL MACHINE directory, in a special directory named SYSTEM\Current-

ControlSet\Control\Class\{4D36E972-E325-11CE-BFC1-08002BE10318}. All entries con-

tain a string variable called ComponentId. The string of the TAP driver should have the

value “tap0901”, or “tap0801” for the older releases of the driver. If such an entry is found,

the device ID can be retrieved. It is contained in the string variable NetCfgInstanceId.

11They cannot be browsed with the Windows Explorer because that is only capable of browsing files of

the files namespace, which is located below the global root. Russinovich provides the tool WinObj [38]

for browsing the whole namespace.
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Opening a registry entry is done with the system call RegOpenKeyEx(), iterating through

the entries is done with RegEnumKey(), and querying specific entries is done with RegQuery-

ValueEx(). All Windows system calls, and more, is found in Microsoft’s very comprehensive

online developer network at [28].

Once the device ID is retrieved, the device can exclusively be opened with a call to Create-

File(). As already mentioned, the path to the device is “\\.\Global\<device ID>”. Once

device is opened, it can be written and read using the system calls ReadFile() and Write-

File() as shown in Listing B.1 on page 85. The Listing has been moved into Appendix B

because of its length.

Reading and writing is different from what one might expect. It behaves like non-blocking

I/O (see Section 4.3.1 about non-blocking behavior on Unix-like OSes). Non-blocking

means that calls return immediately and do not wait until the request is completed. To

wait for completion, Windows provides the call WaitForSingleObject(). After it finished its

request, status shall be retrieved with GetOverlappedResult().

This is what Listing B.1 shows. First, the read request is posted with ReadFile(). Second,

the function waits in a loop for the request being finished. In that case, a time period is

supplied additionally. This protects the program to block forever in case something goes

wrong. After successfull completion, the result is retrieved with GetOverlappedResult(). As

also shown in the sample Listing, additional error checking should be done very careful.12

There are two more differences compared to the Unix tunnel devices. First, the message

format of the tunnel device has no tunnel header as shown in Figure 4.4 on page 31.

Second, the tunnel device can only be operated in TAP mode.13 It always operates like

a virtual Ethernet device. Thus, for a software attaching to it, it may be required to

implement also layer 2 protocol requirements like, for example, the NDP protocol, as has

been described in Section 3.2.1.

4.3 Doing Several Tasks in Parallel

Userland processes are usually dedicated to a single CPU. If not designed in a specific way,

every process (application) is always only capable of doing one step after the other. This

is sufficient for many applications but especially when it comes to network programming,

12The original code has some additional error checking. It is stripped off in this example to make it more

readable.
13Eventually, that is the reason why it is called TAP driver.
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it may be required to do several things in parallel. This is easily explained. A web server,

for example, should serve several clients at the same time, but not just one after the other.

Simply adding CPUs into a server does not circumvent the problem. There are several

models available for parallelizing tasks.

• Multi-processing means running several processes in parallel. This is what every OS

usually does by default. Actually, always only one process is executed at a given

time, but the OS schedules one after the other for a small amount of time. In other

words, they are executed in dedicated time slices. This has the effect that it looks

like if they are executed in parallel, even if they are still execute one after the other.

But it still gains some execution time, because often a process has to wait for some

events. As an example, a process may wait for new data arriving on the network

card. During this time another process may complete some instructions.

Processes are dedicated to the CPU by the OS using scheduling algorithms to be

as efficient as possible. Several algorithms are available as described in [40]. Multi-

processing is expensive in respect to memory and CPU time and it requires some

communication methods. Obviously, because usually tasks are interdependent on

each other, in particular if they should complete a specific job together in parallel.

This communication methods are usually summarized by the term inter-process com-

munication (IPC) [40]. These methods are expensive because every process has its

own dedicated memory space and switching from one to another (context switching)

is time consuming.

If a computer system commands several CPUs, processes might really run in parallel.

Multi-processing is the traditional method of parallelizing.

• Multi-threading allows execution of several instruction streams within a process in

parallel. This has several benefits compared to multi-processing. It is much cheaper

in respect to memory and execution time and it may utilize more simple intercom-

munication methods like shared variables. It does not involve such expensive context

switches, even if the OS still has to switch from one thread to another. But it has

not to change the whole process context. Multi-threading has a downside, too. It

requires a program to be written very thoroughly, particularly in respect to shared

resources like variables. This is because the OS does not sanitize access to those.

This is different to multi-processing because, if using IPC in a proper manner, the
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OS will protect shared resources. Of course, IPC may still be used, but often also

this is expensive and it may reduce performance gain of multi-threading.

If a computer system commands several CPUs, also multi-threading enables the use

of all of them in parallel at the same time.

• Specifically for network programming or I/O intensive processes in general, it is

possible to select on non-blocking I/O channels that are ready for reading or writing

and dedicate short instruction streams to those being ready, one after the other. This

creates virtual parallelism, even if those instruction streams are executed sequentially

in reality. This has the benefit that it does not involve expensive process or thread

switches, it does not need any kind of IPC and, because it has no real parallelism,

it does not involve the problem of accessing shared resources at the same time. The

downside is that it does not utilize more than one CPU, even if they are available,

and it may involve complex conditional branching. Selecting on non-blocking I/O is

explained below in Section 4.3.1.

A good choice, particularly for this application, is to use multi-threading and selecting

non-blocking I/O channels together. This is a good tradeoff of enabling a program to

utilize several CPUs and not spending to much time and memory for context switches.

Multi-threading should be done by the standardized POSIX14 threads interface (Pthreads).

A very good literature to Pthreads programming is found in [30]. The Pthreads interface

provides function calls for thread creation and deletion, and it is capable of dealing with

access to shared resources. Generally, this is referred to as thread locking. It includes

conditional and unconditional mutexes.

4.3.1 Selecting on Non-blocking I/O

Selecting on non-blocking I/O needs some additional explanation. POSIX-like OSes pro-

vide a wide range of I/O channels. These are communication channels to or from which

data can be written or read. Traditional I/Os are files, pipes, and sockets. Sockets have

been mentioned already at the beginning of this Chapter. Once those I/O channels are

opened, they can all be read or written with the same system calls. Obviously, opening

an I/O channel is different and depends on its type. To open a file, for example, a file

14Portable operating system interface for Unix.
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name is needed. Opening a socket probably requires a port number, an IP address and a

protocol type, like UDP or TCP. In case of success, the opening function always returns a

file descriptor which is an integer number identifying this specific I/O channel.

After opening, all of them can be read or written with the same set of system calls.

The most basic ones are recv() and send().15 Some more are available but it will not be

elaborated on them as it is not necessary here. All system calls are documented very

well. They are found in the developers manual pages, in Lewine’s comprehensive book on

writing portable code [25], and online at the Open Group site [45].

I/O channels may be blocking or non-blocking. The default setting for most channels is

blocking. This means, that system calls are waiting as long as the operation is finished

while manipulating the underlying I/O. For example, writing (with send()) data to a socket

may take some time.16 On the other hand, reading some bytes from a socket might last

even much longer. This is because the receiver does not know when the next bytes will

arrive.

This leads to the case that blocking reads or writes block the whole process at specific

locations within the code. This implies two things. First, as mentioned before in Section

4.3, processes usually can always execute just one instruction at a specific time. Thus, a

process cannot read and/or write two or more I/O channels at the same time. Second,

if a process is in a state waiting for something, this suggests to do something else in the

meantime.

To avoid that a process may be stuck somewhere because of an I/O operation blocking

too long (probably infinite), the I/O channel’s behavior may be changed to non-blocking.

This is done by manipulating it using its file descriptor with the system call fcntl() as

shown in Listing 4.3 on page 40. First the current flags are retrieved with the low level

command F GETFL. Then the non-blocking flag is set by logical or’ing them with the flag

O NONBLOCK. Then the flags are set again with the command F SETFL. Prototypes and

flags are usually defined in the C header file fcntl.h. Another method is opening the I/O

channel in non-blocking mode, a priori. But not all opening functions support this.

Operations on non-blocking I/O behave different. This has two consequences. First, calls

will always immediately return, independently if they were successful or not. Second,

15The reader might be more familiar with the function calls read() and write(). They are very similar but

send()/recv() allow to additionally pass some flags to the underlying I/O channel.
16Even if this is just 1 ms it is “some” time compared to the instruction execution time of a modern CPU.
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// fd i s the f i l e d e s c r i p t o r o f an open I /O channel .

void s e t nonb lock ( int fd )

{

long f l a g s ;

i f ( ( f l a g s = f c n t l ( fd , F GETFL, 0) ) == −1)

{

log msg (LOG ERR, ” could not get socket f l a g s f o r %d : \”%s \”” ,

fd , s t r e r r o r ( errno ) ) ;

f l a g s = 0 ;

}

i f ( ( f c n t l ( fd , F SETFL , f l a g s | O NONBLOCK)) == −1)

log msg (LOG ERR, ” could not s e t O NONBLOCK fo r %d : \”%s \”” ,

fd , s t r e r r o r ( errno ) ) ;

}

Listing 4.3: Changing I/O to non-blocking.

detecting errors is different. On blocking I/O errors are directly returned as soon as they

occur. This is not always possible with non-blocking I/O since function calls do return

immediately, but errors may occur later. Obviously in that case, they can impossibly be

returned before. Thus, errors must carefully be detected later.

Beside those two issues also the semantics of a program should be changed. This is

because using this technique, no point of waiting exists. This is important because usually

I/O channels are much slower than CPUs may execute programs. With non-block I/O

a program might read (or write) from several I/O channels virtually at the same time.

Virtually, because they are still read (or written) one after the other.

But what to do if, for some time, no bytes arrive on a socket? A very unclean solution is

to sleep for some time and then try reading (or writing) from all channels again. This is

unclean because mainly for two reasons. First, if bytes arrive or a channel gets ready for

writing before this time period elapses, the program will not be able to read immediately.

The sleep blocks it until the time period elapses. This means it may loose some time.

Loosing time means data transfer, or whatever, is getting slower. Second, the program

has to try reading (or writing) all I/Os. This would include I/Os actually not being ready.

Again, this wastes valuable time.
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int s o e r r ;

s o c k l e n t e r r l e n = s izeof ( s o e r r ) ;

// fd i s a f i l e d e s c r i p t o r to t e s t f o r e r ro r s

i f ( get sockopt ( fd , SOL SOCKET, SO ERROR, &so e r r , &e r r l e n ) == −1)

log msg (LOG ERR, ” getsockopt f a i l e d : \”%s \”” ,

s t r e r r o r ( errno ) ) ,

e x i t ( 1 ) ;

i f ( s o e r r )

log msg (LOG ERR, ” getsockopt returned %d (\”%s \”) ” ,

s o e r r , s t r e r r o r ( s o e r r ) ) ,

e x i t ( 1 ) ;

// eve r y t h ing ok , cont inue . . .

Listing 4.4: Testing socket file descriptor for errors..

To solve this problem nicely, POSIX defines the system call select().17 The function call

takes some arguments. The most important ones are the read and write sets. These are

sets of file descriptors which the select() command should wait for to get ready. Select()

will block until at least one of the file descriptors contained in the sets gets ready.

To call select(), the sets have to be set up correctly. A set is of type fd set. It should

be cleared initially with a call to FD ZERO().18 File descriptors may then be added with

FD SET(). Detailed descriptions are found in the manual pages or in [45, 25]. Prototypes

and macros are found in the C header file sys/select.h. Select() returns the number of file

descriptors that are ready. Those being ready can be tested for their readiness with calls

to FD ISSET().

Beside reading or writing, select() can also be used to wait for other events. Particularly in

respect to network and socket programming, these events are creation of socket connections

in both directions. This means either connecting to a remote socket with connect() or

accepting an incoming connection with accept().

For outgoing connections in particular, it is important to test the file descriptor for errors.

Listing 4.4 shows how to test for socket errors with getsockopt(). It can be used for various

socket manipulations. To test for errors it shall be called with option SOL SOCKET and

SO ERROR. Prototypes are defined in sys/socket.h.

17POSIX defines also the call pselect(). Its main difference to select() is that it allows to influence signal

behavior while the command blocks. But this is beyond the scope of this document.
18According to the POSIX standard, it might also be implemented as a macro.
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4.4 Summary

In this Chapter a brief overview on the interaction of operating systems and their attach-

ment to the network was given. The relation between an OS and the OSI layer model was

shown. It is important to understand the process of routing and packet forwarding, which

has been explained thoroughly. Using that picture of an OS, it can clearly be defined were

userland processes and where the kernel is located in respect to the model.

The tunnel device is a kernel driver and thus located at a very low layer. The flow of

packets through the tunnel device and the interaction with the kernel’s routing process

has been discussed – for Unix-like OSes and for Windows.

In the Sections behind, the problem of executing several instruction streams in parallel

within a process has been pointed out. One pseudo-parallelism is created by using select()

and non-blocking I/O. This was briefly explained.
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Tor [43] is an anonymizing network. It is based on the Internet and consists of several

nodes capable of forwarding TCP/IP sessions through it. Thereby it hides the origin at

the destination endpoint. The location of a user, that is his IP address, is hidden at the

remote site. For example, the IP address of a user accessing a web service will not be

disclosed in the server’s log files. Instead, the IP address of a random Tor exit node will

appear. An exit node is a Tor node at which a TCP/IP session leaves the Tor network.

This is a great feature because it improves a person’s privacy, specifically if somebody

resides under aggravating circumstances. Unfortunately, Tor is not only used in the “right

manner”. Someone could also missuse it, and if done right, nobody will every discover

who did wrong, because even for the Tor network itself it is impossible to find out the

originating IP – deliberately it is a design feature. Always only the IP addresses of exit

nodes appear in the public and depending on the law of the country where an exit node

resides in, it could lead to a law-enforced service shutdown or even something worse. That

is why people are usually not willing to run exit nodes.1

5.1 Introduction to Hidden Services

The counterpart of a user willing to hide his location is a service which should be hidden.

This is a service which is known to exist and it is known how to access it but it is unknown

where it is. This includes that also the service’s IP address is unknown and the site

maintainer is unknown, as long as he does not reveal himself. Basically, it could be any

type of service, a web service as a prime example.

In traditional Internet this is more or less impossible because an IP address can always be

traced back to an Internet provider and finally to a user or a company. Hidden services

1This is not the only reason but probably the most important one.
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[11] are services which exist only within the Tor network. Different from what we know

from Internet, they are not identified by an IP address but by an onion-URL. The Tor

network is able to find the right path to it, but neither the user nor the Tor network can

detect the IP address.2 Details on onion-URLs are given later in Section 5.2.

Beside location hiding there is a second great benefit: connections to hidden services do not

leave the Tor network. No single exit node is needed. This is perfect because, as already

mentioned, exit nodes are rare and because of that they are permanently overloaded with

traffic. This results in a high latency.

Another benefit is that Tor guarantees end-to-end encryption from the client to the hidden

service which is not true for connections to the Internet, even when using Tor. Unfortu-

nately this is quite often misunderstood. According to the Tor project page [43], many

users believe that everything gets encrypted just because they use Tor.

This is why the use of hidden services is really interesting. Providing them increases the

privacy of users and service providers.

Unfortunately, these onion-URLs look like random numbers and characters – and in fact

they are more or less random – which makes them really hard to remember, even harder

than IP addresses, because they have 16 digits.

But who really needs to remember IP addresses? Nowadays, everybody uses hostnames,

www.cypherpunk.at as an example. There is the domain name system (DNS) [27] which

resolves names to IP addresses. In traditional Internet, name service is one of the most im-

portant ones. Nearly every user and every service uses names instead of IP addresses while

using the network. The introduction of DNS in the 80s – a distributed name resolution

service – made the Internet more usable and opened it to a wider community.

But within Tor there is currently no resolving mechanism available for translation of names

to onion-URLs. Traditional DNS cannot be used that easy because it is IP-based3 (specifi-

cally the Internet class IN). Hidden services are onion-URL based. They cannot be simply

exchanged with IP addresses.

From the Tor network’s point of view those URLs are already names. Theoretically, an

approach could be to use canonical names (CNAME) pointing to onion-URLs but this

would break authentication. Unlike IP addresses, onion-URLs provide authentication.

This means, by using the onion-URL, a user can verify that a service really is the right

2Of course only if the service is configured correctly.
3That’s not a matter of design but a matter of the real (IP) world.
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Figure 5.1: Hidden service initialization.

hidden service and not any other one that pretends to be the right service. How this

authentication works is explained later in Section 5.2.

DNS basically does not interact with services that are associated with names. That is, it

cannot provide authentication as it is used for Tor and the security of users and services.

Even if someone deals with those onion-URLs, it is still not easy to use hidden services be-

cause the interface between an application and Tor is SOCKS. SOCKS has been explained

in Section 3.3.1. From a software modularity point of view it is a good idea to use SOCKS

because it is a well standardized interface and many applications support it. But many

do not. And every application that supports it needs user interaction for setting up the

right configuration for SOCKS. A user should be able to use hidden services without any

differences to regular Internet services.

5.2 Hidden Service Internals

As already mentioned, the Tor network consists of several nodes. All nodes have their own

identifiers. They are listed in central directories – the Tor directory – together with their

IP address and some additional information. Hidden services are TCP session endpoints

(TCP server sockets) on a Tor node. The goal is to connect to this TCP server socket

without the possibility to put the hidden service with the node that it resides on into

context.

Therefore every hidden service generates its own asymmetric key pair.4 At the current

versions of Tor this is a 1024 bit RSA5 key. The public key PK is hashed with the SHA-1

4Public key algorithms have been discussed in Section 2.1.
5RSA [39] is a well known public key algorithm. It can be used for encryption and authentication.
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Figure 5.2: Creating a connection to a hidden services.

cryptographic hash function.6 It results in a 160 bit value H = SHA(PK). Then it takes

the most significant 80 bits. This is the permanent ID. Furthermore, the hidden service

randomly selects three Tor nodes and builds virtual circuits to them, as shown in Figure

5.1 on page 45. Those are the introduction points (I1, I2, I3). Finally, it publishes its

permanent ID together with the identifiers of the introduction points, the public key, and

a digital signature to the hidden service directory.

This set of information is called hidden service descriptor. As part of the nature of the

Tor network, the introduction points do not know who the originator of the circuit is. The

permanent ID is then base32 encoded as described in RFC3548 [1] and the string “.onion”

is appended.

The RSA private key contains some randomly chosen prime numbers.7 The public key

is derived from those numbers, hence, also the public key is random. The hash function

deterministically calculates a value with a fixed width of 160 bit. Obviously, because the

input is a random number, the result is reflected in a random item of the set of all numbers

of 160 bit length. Cutting of 80 bits does not change anything of its randomness. It just

reduces the size of the set. Base32 encoding can be considered as a transposition into

another number system with a base of 32. This also does not change randomness. A real

example for an onion-URL is “ejbv7bc3cj53lo6c.onion”. Its permanent ID in hexadecimal

representation is 0x22435f845b127bb5bbc2.

Bob, the hidden services provider, tells Alice about the onion-URL of his hidden service.

This happens out-of-band in respect to the Tor network. This could be in a personal

dialog, through a weblog, a newspaper, or whatever.

6Hash functions have been discussed in Section 2.2.
7See [39] for protocol details.
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Figure 5.3: Finalization of the connection setup to a hidden services.

Using this information, Alice opens a SOCKS4a connection (see Section 3.3.1) to her Tor

proxy and requests a connection to the desired onion-URL. As mentioned at the beginning

of Chapter 5, SOCKS is the client interface of Tor. As shown in Figure 5.2 on page 46,

Alice’ Tor proxy fetches the hidden service descriptor out of the hidden service directory.

The Tor proxy can verify that the onion-URL and the hidden service descriptor belong

together, and that the descriptor is unmodified. Therefore it verifies the digital signature

of the service descriptor using the public key which in turn is contained in the descriptor.

Then it computes the hash value of the public key as described above and compares it to

the onion-URL. If they are equal everything is ok. Next, it randomly chooses another Tor

node being the rendezvous point (RP). The rendezvous point cannot detect the identity

of Alice’s proxy because of the nature of Tor’s virtual circuits.

Now the finalization of the connection setup to the hidden services starts. The steps are

shown in Figure 5.3. Alice first initiates it by connecting to one of the hidden service’s

introduction points. There she posts a message to the hidden service. The message is

encrypted with the public key of the hidden service. It contains the identifier of the

chosen rendezvous point and a random one-time secret. This is a secret piece of data used

only once. The introduction point delivers the message to the hidden service through the

virtual circuit.

The hidden service in turn decrypts the message, connects with a virtual circuit to the

rendezvous point, and posts a message together with the one-time secret to Alice. The

rendezvous point delivers the message and connects the two circuits together. Alice and

Bob can now securely exchange data but both do not know about the identity of each

other. No other element of the network has a knowledge about that, too.

The connection is end-to-end encrypted because the initial message from Alice to Bob
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through the introduction point and the response from Bob to Alice through the rendezvous

point are used to complete a Diffie-Hellman key exchange.8 This key is then used as a

symmetric key for Alice and Bob for data encryption.

5.3 Summary

This Chapter briefly introduced the Tor network. It is designed to provide anonymity in

respect to the underlying method of addressing. These are IP addresses.

Beside that, it provides hidden services. That is, hiding services within the Tor network.

Hidden services are addressed using onion-URLs. The nature of hidden services and onion-

URLs has been discussed in detail.

8See Section 2.1 and [39] for more information about Diffie-Hellman.
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Building an Anonymous VPN
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Building an anonymous VPN basically addresses two problems. First, anonymity and

second, building a VPN. Creating anonymity is not an easy task but is done well by

several systems like Tor, as has been explained in the Section 5. Reinventing the wheel is

not an option, hence, we rely on the anonymity that such systems provide. This is Tor in

particular but it is not limited to.

Based on the theoretical work elaborated within this document, a project evolved. It

is a connector using a kernel-to-userland interface on one end and Tor with its SOCKS

interface on the other end. First trials were made with the software called socat [37]. It

implements the features that are necessary for a trial in a manual setup. Socat is based

on the ideas if netcat.

The project described here is in parts similar to socat but it is designed to work specifi-

cally with Tor. The routing mechanism of Tor is called onion routing because messages

are repeatedly encrypted like the peelings of an onion. Thus, this project got the name

OnionCat. In the following, this term will be used to refer to that project.

As has been explained in Section 3.4, VPNs consist of two fundamental parts. The virtual

circuits and the traffic they carry. Both can be fitted into the OSI model and both may

not be of the same layer.

OnionCat does not create a completely new type of virtual circuit. It uses circuits which

are created by anonymizing networks upon request, like Tor does.

Tor’s virtual circuits, which are relevant for OnionCat, exist only within the Tor network

and connect two Tor nodes. As it is the case for most virtual circuits, one end initiates

the connection and the other end accepts it. The latter usually is referred to as server.

Again, within Tor nomenclature this server is called hidden service as explained in 5.1.

The circuits are based on TCP. As such they are above layer 4 in respect to the OSI model.
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Part of the nature of anonymizing networks calls for the capability of two nodes (connected

by a virtual circuit) to open up communication channels, but not know who or where the

other node is. After circuit setup Tor does not care about data carried within it. It just

manages that bytes piped into it at one end drop out at the other end and vice versa.

For all virtual circuits, addressing is required to designate a connection to a specific server.

For TCP/IP sessions, addressing is achieved by an IP address and a port number (see

Sections 3.1 and 3.3). Tor uses onion-URLs to address a specific hidden service (see Sections

5.1 and 5.2).
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(a) OnionCat layer insertion.
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Figure 6.1: OnionCat in layer model.

OnionCat requests Tor to build such virtual circuits and sends raw IP data across. In

this application the virtual circuits carry IP data as it is true for most VPNs. Figure

6.1(a) shows how OnionCat fits into the architecture of network protocols as defined by

the OSI model. In the upper right corner it shows Tor’s virtual hidden service circuits.

They are based on TCP, hence, they are located above transport layer within the model.

OnionCat (the cat’s paw) inserts the VPN layer, but it is not just an insertion as it was

shown in example Figure 3.9 on page 24. OnionCat actually makes a bridge from above

the transport layer down to the network layer. If this pictures is enrolled it looks like in

Figure 6.1(b).

OnionCat creates a VPN layer (gray shaded area) on top of layer 2. The VPN layer is

based on Tor circuits, hence, it uses several layers. These are layers 3, 4, and those above

4. The VPN layer carries IPv6 packets. Thus it provides a layer 3 interface on the top

end. As it is true for all VPNs, the users (clients) of the VPN do not “see” the VPN layer.

This means it is completely transparent.
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What Figure 6.1(b) does not show is, that Tor circuits themselves are a VPN layer in

respect to the Tor network. It provides a TCP interface (through SOCKS) and is based

on TCP itself. Thus, they gray shaded layer 4 box could be further subdivided.

The downside of this high stack of layers is that it introduces much overhead. Basically

every inserted layer introduces overhead but, obviously, more layers introduce more over-

head. In this case the VPN layer overhead is at least the IPv4 header of 20 bytes, the

TCP header of at least 20 bytes, and the cell overhead of Tor’s circuits. According to [11]

this is at least 3 bytes. Tor’s circuits are based on transport layer security (TLS) [9]. TLS

overhead is hardly determined as it is a fairly complex protocol but it may be assumed

with at least 5 bytes. This are at least 48 bytes at a total.

6.1 OnionCat Addressing

A typical configuration for most kinds of VPNs is that they are setup in a static way.

An example of this would be how their virtual circuits are addressed. It is common for

organizations to run a centralized VPN entrance point to which all VPN participants

connect. This setup is easy and usually matches all requirements for such a private VPN.

But it is not suitable for an open anonymous network for several reasons.

1. The person or organization that runs the entrance point probably will not stay

anonymous. Even if they never appear in the public, such an entrance point might

be revealed due to the fact that it is a traffic sink.

2. A centralized service is always a single point of failure.

3. The service provider might enjoy unlimited trust of its users which obviously would

never be the case in today’s world.

4. That kind of service could attract certain interest of various organizations like intel-

ligence services.

Hence, the approach is to distribute it. To connect a Tor client to a hidden service, an

example being establishing a virtual circuit within Tor, it is required to use Tor’s addressing

method of choice for hidden services. As has been explained in Section 5.1, Tor uses onion-

URLs which are 80 bit long addresses. If we assume that every client runs his own hidden

service, then all of them also get a unique hidden service address – an onion-URL. This
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leads to the interdependency that every client can connect to every other client since every

client now also is a uniquely identifiable server.1

The difficulty now arises from layer discrepancy. OnionCat lies between Tor on one end

and the operating system on the other end. In respect to the layer model (see Figure 6.1)

Tor (the hidden service) operates above layer 4. The other end of the VPN layer which

OnionCat creates is at layer 3, which is the IP layer. Every layer has its own addressing

method. Hidden services use the 80 bit long onion-URL and the IP layer obviously uses

IP addresses. A static configuration, one example is a configuration file, would solve that

problem but not in respect to the requirement from above of not being static.

7 bits

Prefix

1

L

40 bits

Global ID

16 bits

Subnet

64 bits

Interface ID

Figure 6.2: Unique-local address format.

We looked for a complete dynamic solution which does automatically exclude some kind

of “configuration file update service”. The solution lies within the IPv6 protocol.

IPv6 uses 128 bit long addresses. This is a huge address space and obviously greater than

80 bits. Because OnionCat should act as a private network with public access, we chose

a network prefix of the unique local IPv6 unicast addresses according to RFC4193 [17].

These addresses are similar to those of RFC1918 [36] for IPv4. The basic address format

is shown in Figure 6.2.

It has a fixed minimum prefix length of at least 48 bits, additionally 16 bits being variable

for subnetting and 64 bits for the interface ID (host part). We do not need any subnet

so we can add the full subnet part to the interface part resulting in an 80 bits wide host

part. The prefix length for those addresses is 48 bits. According to [17] we set the “L”-

bit to 1 and generated a global ID thus resulting in the new unique-local IPv6 prefix

FD87:D87E:EB43::/48 – the OnionCat prefix.

With this, we are now able to translate an onion-URL into an IPv6 address. This trans-

lation is done as follows: base32-decode the onion-URL and insert those 80 bits into the

host part of the IPv6 address as shown in Figure 6.3 on page 54.

1Specifically for Tor it is true that running a hidden service does not require it to be a transit node which

eliminates the headache of attracting huge amounts of traffic. This is of high importance for users with

low bandwidth Internet connectivity.
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Figure 6.3: OnionCat addressing scheme.

For example, decoding 7fd22jhmqgfl45j6.onion leads to 0xf947ad24ec818abe753e. Putting

this together with the OnionCat prefix, it results in the IPv6 address fd87:d87e:eb43:f947:-

ad24:ec81:8abe:753e. It perfectly meets the requirements for OnionCat.

Using this configuration, OnionCat can translate IPv6 addresses to onion-URLs and vice

versa. If an IPv6 packet arrives from the operating system, OnionCat extracts the lowest

80 bits from the packet’s destination IPv6 address, translates it back into an onion-URL,

and requests Tor to open a virtual circuit to the desired destination.

After the connection is setup, OnionCat starts forwarding all packets through this virtual

circuit. On the other end of the virtual circuit, OnionCat receives the packets from Tor and

forwards them to the operating system. The operating system then in turn does with IP

packets what has been said in Section 4. From the operation system’s point of view, there

is no difference if a packet arrived on a physical Ethernet interface or from OnionCat’s

virtual tunnel interface.

This method perfectly distributes the VPN entrance point. In this configuration every

client is an entrance point. Summarized for network users, all one needs to know about is

the destination IP address (or an onion-URL).

6.2 OnionCat Message Format

There are basically two questions associated regarding the data carried across the circuits.

1. Data based on which layer should be carried? Particularly, should only be layer 3

packets, which are IP packets, be carried, or should also layer 2 information, this

is Ethernet, be forwarded? Layer 2 forwarding may be accomplished by using TAP

devices (see Section 4.1) on both ends and send/receive raw data from the device

to the remote end and vice versa. Pure layer 3 forwarding may be accomplished by

using a TUN device instead.

2. Should the data be packaged in some way? This means should the data be prepended

by some kind of header?
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Figure 6.4: OnionCat acts like an Ethernet switch.

The first questions has several considerations. Carrying layer 2, this means whole Ethernet

frames, is the most transparent way. Although computers are connected just virtually,

when carrying Ethernet frames it would behave like if they were connected directly with

a cable or an Ethernet switch. This is depicted in the left part of Figure 6.4. It shows the

virtual OnionCat VPN cloud acting like a virtual switch. Nodes are connected through

the TAP or TUN device.

Unlike common switches do, the IP headers (layer 3) have still to be analyzed, because

they contain the link information of the virtual circuits of the VPN. This is the destination

IPv6 address which is the onion-URL. This was explained in Section 6.1. But this kind of

layer 3 investigation is part of the VPN and the VPN layer. It does not interfere with the

data flow itself. The Ethernet header is generated by the kernel and forwarded to the user

space when using a TAP device.

But carrying layer 2 information has downsides, too. First, it would introduce additional

overhead. This is the Ethernet header of 14 bytes length per frame and thereby per packet,

since every frame carries one packet or packet fragment. Second, it introduces additional

overhead and network interaction, beside those 14 bytes.

As has been explained in Section 3.2, Ethernet has its own method of addressing and

utilizes some specific protocols. One of these is NDP. Communication on Ethernet requires

NDP handshakes beforehand. Even though this is of negligible effort for a local high

bandwidth network it may introduce considerable traffic for a very low bandwidth wide

area network.2 Furthermore, protocols designed for Ethernet rely on its low latency, hence,

2Observations during this research turned out that the average bandwidth of a hidden service circuit is

somewhere between 2 and 10 kbytes/s at the current state of the Tor network. It is not part of this

55



6 Creation of a VPN Layer

they may behave incorrect on networks with poor timings.3

Those arguments suggest to not forward layer 2 information and to use TUN devices only.

They do not have any layer 2 information at all, as has been explained in Section 4.1. But

also this has downsides. First, at least for Windows no TUN device exists (at least at the

moment). Only a TAP device is available (see Section 4.2). It would break interoperability

because a TAP device expects an Ethernet header but a TUN device does not. Thus, they

are not compatible.

Generally, a TAP device provides another benefit: it allows bridging which a TUN device

does not. Bridging means connecting two Ethernet segments together. An Ethernet bridge

is nothing else than a switch with only two ports. Bridging is a feature of layer 2, hence, it

requires layer 2 information which TUN devices do not provide. Although a TAP device

is a virtual software device within a computer system, it can still be bridged, for example,

to another virtual Ethernet device or even to a physical Ethernet device. For Linux the

project Net:Bridge [41] (aka bridge-utils) provides a software bridge capable of bridging all

types of Ethernet devices together. This is also shown in the right part of Figure 6.4 on

page 55. When using a TAP device, it is possible to bridge it to the outside of a computer

using the bridge-utils. Thus, connecting a physical switch and other computers with their

real Ethernet interface (denoted as “ETH”) becomes possible. Furthermore, those two

physically connected computers do not need to know about OnionCat or Tor.

To summarize again the pros and cons of those issues:

• Transparent use of TAP devices requires layer 2 information to be forwarded. This

increases the overhead and might reduce reliability because of critical timing.

• Transparent TAP usage avoids interoperability to TUN clients.

• Using TAP devices intransparently might require Ethernet protocol interaction like

NDP. But this in turn allows TUN/TAP interoperability.

• TAP devices also involve more local protocol overhead and OS interaction because

of the layer 3 protocols.

• TAP devices allow (real) Ethernet bridging.

study, thus this was not investigated thoroughly.
3Round trip times on hidden service circuits have been observed between 1 and 10 seconds. This is about

1000 times higher than it is on a typical Ethernet.
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Figure 6.5: OnionCat’s hyprid layer 2/3 model.

• Transparent use of TUN devices has less overhead but avoids TAP interoperability.

• TUN devices have less local overhead, too.

• TUN-only implementation would break Windows interoperability.

Apparently, the choice is to forward layer 3 information only to reduce overhead but it

should allow TUN as well as TAP devices. This requires OnionCat to deal with layer 2

protocols locally, because layer 2 information is not forwarded across the virtual circuits.

This is a hybrid approach. It allows the attachment of layer 2 devices and virtual layer-3-

only devices but forwards only layer 3 information which are IPv6 packets. This could be

compared to a router doing only packet switching within a single virtual Ethernet segment

as it is shown in Figure 6.5. It is not a real router because it does not connect different

layer 2 segments. This also implies that even though layer 2 devices are attachable, the

network is not layer 2 transparent. No layer 2 protocol is forwarded, being the spanning

tree protocol4 (STP) [42] an example.

Nevertheless, this approach has several benefits. First, layer 2 protocol handshakes, NDP

in particular, are done locally which completely mitigates the timing problem. Second, it

prevents a possible information leak. MAC addresses are usually created by the local OS

or the TAP driver. Thus, sending them across might leak information.5 Third, it allows

TUN/TAP interoperability.

The downside of this choice is that the software is required to have NDP implemented.

As said in the beginning of Section 3.2.1 on page 18, NDP addresses several problems.

Neighbor discovery and link-layer address determination, router discovery, and path main-

4STP primarily allows loop detection within Ethernet segments.
5Although this was not investigated, it might allow conclusions to the type of OS of a sender if MAC

generation algorithms of some OSes in repsect to their tunnel devices are known.
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tenance. As mentioned in that Section, only the link-layer address determination is im-

portant. OnionCat is not a router, hence, it may not provide router discovery and similar

features.

For outgoing connections it has to intercept neighbor solicitation messages, extract the

IPv6 destination address and demand a virtual anonymous circuit if the address is of

the format as has been specified in Section 6.1. Simultaneously it has to respond with a

solicited neighbor advertisement message.

As a consequence of incoming virtual circuits, OnionCat sends a neighbor solicitation

message to the kernel end of the TAP device and awaits an advertisement. After that

handshake packets can be forwarded.

 : TorNetwork

: accept()

local : OnionCat remote : IPStack

: receive_packet()

: ndp_solicit()

: receive_packet()
: receive_packet()

: send()

: send()

: ndp_solicit()

local : IPStack

: receive_packet()
: receive_packet()

remote : OnionCat

: connect_circuit()

Figure 6.6: Packet flow sequence diagram with TAP devices.

Due to the fact that only layer 3 information is carried across the virtual circuits, OnionCat

has to create the layer 2 header to have a correct format as required by TAP devices. For

the outgoing direction the layer 2 header is stripped off. This timing behavior is shown in

Figure 6.6. On the right side is the sender OS (local:IPStack) connected by a TAP device

to the local OnionCat (local:OnionCat). This connects to the Tor network, drawn in the

middle. On the right side is the remote OS and remote OnionCat.

The local OS tries to send an IP packet. Thus, it first has to complete an NDP solicitation.

The local OnionCat immediately responds and requests a virtual circuit from the Tor

network in parallel. The remote OnionCat will accept the connection. If packets are sent

before the connection is established, they are dropped. The local OnionCat does not buffer

any packet. The local OS sends packets through the TAP device to OnionCat, this in turn

will send them through the circuit to the remote OnionCat. As a consequence, the remote

OnionCat will complete an NDP solicitation. Once completed, packets are passed from

the remote OnionCat to the remote OS.
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An Ethernet header contains two MAC address fields. This is a source and a destination

as described in Section 3.2. One field is the local TAP device’s address or the address of

a physically bridged device, the other address is the communication counterpart. Since

layer 2 information is not forwarded but locally acknowledged, OnionCat uses its own

“randomly” generated MAC address.

A second question was mentioned in item 2 on page 54: should the data packets travelling

through the virtual circuits be prepended by an additional header? At a first glance this

might make sense. Because an additional header could introduce some modularity. The

header could contain information of the type and length of the packet carried within the

payload, or the protocol version used by OnionCat, as an example. But the downside of

an additional header is – again – additional overhead.

Furthermore, the packets actually already have a very comprehensive header anyway – the

IPv6 header. This header has been shown in Figure 3.5 on page 15. OnionCat has to deal

with the IPv6 header anyway because it has to decode at least the destination IP address

to be able to request virtual circuits. Thus, we decided to not prepend any additional

header.

The first four bits of the IP header contain the protocol version. However, if it gets

necessary to prepend a header some time, it could be accomplished by using the IP header’s

version field to distinguish between packets with and without header.

Version number 5 might be a good choice because IP protocol version 5 never existed

in real networks. It is very unlikely that it will exist ever because version 6 is already

deployed. Also we do not believe that an additional header gets necessary, because even

control information might be carried within IPv6.

6.3 Summary

In this Chapter it was explained how the basic building blocks being the concepts of a

VPN and an anonymizing network, Tor in particular, are sticked together. The layer

discrepancy was discussed and the method of address translation was explained in detail.

It is translation of onion-URLs into IPv6 addresses and vice versa.

Furthermore, the message format of the VPN layer was presented and the method of

TUN/TAP interoperability. VPN messages contain only layer 3 information. The layer 2

header is generated locally, if desired.
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Before designing a software, we have to take into consideration what functionalities it

should have and which non-functional requirements it should fulfill.

Basically it bidirectionally shall forward IP packets, these are IPv6 packets in particular.

On one end it should send and receive packets to and from a tunnel device as has been

described in Sections 4.1 and 4.2. On the other end it shall communicate with Tor, or

more specifically with a Tor proxy. This communication shall be bidirectional, too.

Different from the tunnel device which is opened once at startup, the connections are set

up on demand. Furthermore, there are two types of connections in respect to the Tor

proxy: outgoing and incoming ones. The outbound connections are requested through

the SOCKS4a interface (see Section 3.3.1) of the Tor proxy. Those SOCKS requests

create virtual circuits to hidden services as has been described in Section 5.2. Incoming

connections are such connection which are requested by some remote OnionCat client.

They must be accepted locally.

For every active connection to another OnionCat VPN member a TCP session must exist,

independently if inbound or outbound. Data should be read and written from and to them,

concurrently. Every session is associated with a specific client or hidden service, identified

by an onion-URL or an IPv6 address respectively. This has been described in Section 6.1.

Thus, it has to maintain a peer list. Every list entry has to contain at least a TCP session

identifier and the IPv6 address to which it is associated. To prevent the peer list from

growing infinitely in the course of time, it should be cleaned up periodically. Details on

the peer list are found later in Section 7.1.1.

Non-functional requirements are memory and CPU efficiency to make it possible to be run

on tiny systems like embedded controllers. It should also be able to utilize several CPUs if

it is used in heavy loaded high performance environments. It should be as much portable

as possible to become used by many people on different OSes.
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7.1 Internal Design

Being a piece of software acting as a client and a server handling several different con-

nections at the same time, it has to deal with concurrency. As has been described in

Section 4.3 several models for parallel processing are available. The requirements previ-

ously mentioned suggest a hybrid model of using multi-threading and selecting several I/O

channels (see Section 4.3.1). This seems to be a memory friendly approach by still offering

multi-core CPU support.

The normal mode of operation will be forwarding data which is coming in on the tunnel

device on one hand, and forwarding data which is coming in on the virtual circuits on the

other hand. Thus, two threads are supplied, each as a packet forwarder on both ends. Two

more threads are used for creation of outgoing circuits and acceptance of incoming ones.

They are selecting on multiple I/Os. Of course this could be done within a single thread

but it is chosen in that way due to increase of software modularity. Another separate

thread will do data housekeeping, cleaning the peer list as an example.
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Connector

Socket
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Figure 7.1: OnionCat block diagram.

Figure 7.1 gives a brief overview on the internal architecture. The main action controlling

the packet flow from the tunnel device to the Tor network and vice versa is done by the two

threads depicted in the middle. These are the Packet Forwarder1 and the Socket Receiver.

The first handles the outbound direction, the second one the inbound direction in respect

1The thread names might be somehow misleading. They just arose during writing the code. The names

chosen in this description directly reflect the names of the C functions of the code.
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to connections which are assumed to be established already.

The diagram shows three additional threads. This was previously discussed in brief. Those

threads support setup of connections, incoming as well as outgoing, and the peer list main-

tenance. A brief introduction follows here. Some elements of the software are discussed

later in more detail.

Packet reception on the tunnel device is handled by the Packet Forwarder thread. It

extracts the destination IPv6 address of the incoming packet and looks up wether a peer

with this address exists in the peer list or not. If so, it forwards the packet directly to the

peer’s file descriptor2 and continues receiving packets on the tunnel device.

If there is no peer in the peer list it initiates a new connection by triggering the SOCKS

Connector thread. This is done by sending a message to it through a pipe. The packet

itself is dropped. Afterwards it continues receiving packets on the tunnel device.

The SOCKS Connector tries to connect to the hidden service through the Tor proxy’s

SOCKS4a interface. If it was successful it makes a new entry into the peer list and signals

the Socket Receiver to indicate that the peer list has changed. This is done by sending a

message through a pipe to it. If the connection failed, it retries to connect again several

times. After that, the request is dropped.

Data reception from Tor is done by the Socket Receiver thread if connections are already

established. If data is received it is appended to the defragmentation buffer of the ap-

propriate peer. Every peer has its own defragmentation buffer. The buffer is discussed

in more detail later in Section 7.1.2. If the buffer contains at least one complete packet,

the source IPv6 address is extracted from the header. Then it updates this peer’s address

field while it is still empty. Next, it forwards the packet to the tunnel device and deletes

it from the defragmentation buffer.

The diagram shows three pipes pointing to the Socket Receiver. Actually this is a single

pipe having three threads writing to it.

New incoming connections to the hidden service from the Tor network are handled by the

Socket Acceptor thread. On program startup it creates a listening TCP socket and waits

for incoming connections. We chose 8060 to be the default port. According to the IANA

assigned port numbers list [20], the range from 8060 to 8073 is unassigned yet. Once

a connection comes in, it accepts it, creates a new entry in the peer list and continues

2File descriptors are handles for I/O channels like TCP sessions. This was discussed in Section 4.3.1.
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accepting connections. The Socket Receiver is signalled through a pipe if the peer list

changed.

At the time the connection arrives, OnionCat does not know about the originating address

(onion-URL/IPv6) because those TCP sessions are always initiated by the local Tor proxy.

Its source address is 127.0.0.1. Furthermore, it is just the transport. OnionCat (and every

other hidden service) just uses the payload of those circuits (see Section 6). Outbound

packets cannot be sent to this new peer as long as it is not identified.

Identification happens immediately at reception of the first IPv6 packet (see above). Un-

fortunately, this is a known security weakness. One might spoof the source IPv6 address to

impersonate someone else, or to receive packets destined for someone else. This could be

solved by initiating an outgoing connection based on the supposed IP address. Outgoing

packets should then be sent only to this circuit and not the incoming one.

Impersonating a hidden service is impossible, because of the relation between the onion-

URL and its key as has been explained in Section 5.2. Initiating outgoing connections as a

consequence of an incoming one implies that all circuits will be used only unidirectional.3

However, it is not implemented in that way yet. This is because the setup time of a virtual

circuit may be even one minute or longer. This unidirectional approach needs two circuits,

hence, the setup time is spent two times.

The Socket Cleaner thread wakes up periodically. It iterates through the peer list as

described below in Section 7.1.1 and checks if a peer was not used for a given amount of

time. This time is chosen to be 3 minutes. If this idle time elapsed, the virtual circuit is

closed and the peer is removed from the list. This is done in order to not load the Tor

network more than necessary.

7.1.1 The Peer List

The peer list keeps track about active peers. A peer within this context is defined to be a

virtual circuit together with its destination IPv6 address. While activating a peer it runs

through several states. Thus, a peer is associated with a number of fields. Obviously, this

is a file descriptor of the TCP socket and an IPv6 address field. Furthermore it contains a

connection retry counter, a pointer to the defragmentation buffer (see Section 7.1.2) and

an integer value containing the number of bytes kept in the buffer, and an idle timer which

3Such an implementation shall carefully request outgoing connections based on the first packet only.

Otherwise it may be subject to a potential denial of service (DoS) attack to the Tor network.
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Figure 7.2: The peer list.

actually is the timestamp of the last data being sent or received. Additionally, it contains

some fields for maintaining statistics like byte counters. It contains a mutex for thread

locking and a pointer to the next peer.

As show in Figure 7.1 on page 61 all threads access the peer list, hence, thread locking

must be done very careful. To maximize concurrency of threads, two types of mutexes

exist to maintain the list. This is shown in Figure 7.2. The list is a single linked list of

peers of type OcatPeer t. Every peer has its own mutex.

As shown on the left side of the diagram, a start pointer to the first element exists and

an additional list mutex peer mutex. The list mutex is used to lock the list pointers. This

is depicted with the light gray shaded area. To preserve from deadlocks or other kind of

locking failures, the software must adhere to the following rules in that order without any

exception before accessing any data within a peer structure.

1. Acquire a lock to the peer list mutex (peer mutex).

2. Set the current peer element to be the first element of the list.

3. Acquire a lock to the current peer element (OcatPeer t).

4. Test if the element is the desired one. If true, continue at step 9.

5. Set the current peer element to be the next element.

6. Release the peer’s mutex.

7. If the next element does not exist, release the peer list mutex and stop iterating

through the list.

8. Continue at step 3
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9. Release the peer list mutex.

10. Read/modify the peer variables.

11. Release the peer’s mutex.

Once a peer mutex is released, it must never be reacquired directly without following the

steps above.

7.1.2 Buffering and Defragmentation

When writing network applications, it comes always to the question if data should be

buffered in some special situations. In respect to OnionCat a typical example is what to

do with packets while the connection setup is in progress. As long as the connection is

not established, data cannot directly be forwarded. As discussed in Section 6.2, OnionCat

acts like a switch on the virtual Ethernet that it creates. Under this aspect it is easy to

decide if data buffering should be done or not. Ethernet switches do not buffer data at

all, or at least not more than absolutely necessary. We apply this rule to OnionCat.

However, when analyzing protocol behavior, it suggests to not buffer anything, too. Onion-

Cat forwards IP packets. It is a fact that IP packets may get lost in networks. The IP

protocol and the protocols based on IP, like TCP or UDP, are designed specifically to deal

with packet loss.

The sole point where data must be buffered is when it is coming in from the virtual circuits.

We have to do some kind of defragmentation. This might be a little bit misleading. This

defragmentation is not about IP defragmentation.4 It is a fragmentation happening within

the VPN layer. This is below layer 3 (see Figure 6.1(b) on page 51).

The reason for that is that the virtual circuits, which are used within the VPN layer, are

TCP based. As said in Section 3.3, TCP sessions are byte streams but tunnel devices are

packet streams, as has been described in Section 4.1. This means that, if a packet which

in turn consists of a number of bytes is read from the tunnel device and written to the

virtual circuit, it may not arrive at the other end of the virtual circuit as the same bunch

of bytes. The order is preserved but in the worst case they arrive sequentially, one byte

after the other. Only in the best case they will arrive in the same bulk as they were sent.

4IP fragmentation is a feature of the IP protocol.
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To give a real world example, assume to quickly pour a bucket of water into a pipe within

one second. It can be observed that the water will flow out of the pipe after a while, but

not within a single second. It will take longer. In other words, the pipe stretches the

content (the water) of the bucket. And exactly that may happen when sending a bunch

of bytes through a TCP session.

This means that we have to deal with packets arriving in pieces at the inbound direction.5

But it must not be sent as those pieces to the tunnel device. The tunnel device expects to

receive packets as a whole. Thus, they have to be defragmented.

Defragmentation is done using a buffer and a variable containing the current amount of

bytes contained within the buffer. Initially the variable is set to 0. Obviously, every peer

has its own defragmentation buffer. Data is read from the virtual circuits to the buffer

being the counter variable an offset to the start address of the buffer.

As has been described in Section 6.2, OnionCat transmits raw IPv6 packets without any

header, hence, defragmentation is done by detecting and decoding IPv6 headers. This has

two consequences. First, it defines the minimum amount of bytes that must be in the

buffer before decoding may start. Second, it defines the minimum size of the buffer.

Decoding of the IPv6 header requires the header to be complete. As described in Section

3.1, the IPv6 header has a fixed length of 40 bytes. This is the minimum amount of bytes.

The IPv6 header contains a field describing the length of payload of the packet. It is 16

bits wide. Thus, the maximum length of an IPv6 packet is the length of the header plus

the maximum length of its payload. This is 40 + 216 = 65576. This is the minimum size

of the buffer. Actually this is not completely true. The real packet size is limited by

the underlying layer 2. It is the MTU size as has been described in Section 3.2. Tunnel

devices have a default MTU size of 1500. This is not changed by OnionCat for compatibility

reasons. Thus, the minimum buffer size may be set to 1500. However, currently the full

IP packet size is used. On normal computer systems this makes no difference but on

embedded systems with limited resources this should be taken into account.

Once the buffer is filled with at least 40 bytes, the most significant four bits of the first

byte are compared to 6. They contain the protocol version number and in case of IPv6 it

must be 6. If this is not the case, an error occurred somewhere. The byte is dropped and

the counter containing the number of bytes is decreased by one. Otherwise the payload

length field of the header is examined and compared to the byte counter of the buffer. If

5The inbound direction is handled by the Socket Receiver thread.
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the buffer currently contains at least the amount of bytes given in the payload length plus

40 (the header length), the whole packet is sent to the tunnel device. Then those bytes

are discarded from the buffer and the counter is decreased by the appropriate value.

7.1.3 Interacting with the TAP Device

Everything said above within this Chapter in respect to the flow of packets relates to a

tunnel device operated in TUN mode. To support TAP mode, some additional tasks are

necessary. This is because the TAP mode provides and expects layer 2 information as has

been described in Section 4.1. In particular, for reasons stated in Section 6.2, OnionCat

has to be able to deal with the NDP protocol. NDP was described in Section 3.2.1. This

includes two things. First, OnionCat needs an own MAC address that is used in the layer

2 headers. Second, it needs to maintain a list of MAC and IPv6 addresses.

The MAC address is generated at program startup. The vendor ID6 is set to 00:00:6C,7

the lower three bytes are copied from the lowest three bytes of the IPv6 address (which

reflects the local onion-URL). As it is common for most real Ethernet switches, OnionCat

maintains a list with a fixed number of entries to keep the MAC and IPv6 addresses.

Additionally, every entry has a variable containing the age of an entry. After a given

amount of time the entry is deleted from the list again. The time currently is set to 2

minutes. The maximum number of list entries is chosen to be 128 yet.

In TUN mode the Packet Forwarder drops all packets with a destination address that has

a prefix different from that chosen for the OnionCat network (see Section 6.1). In TAP

mode the Packet Forwarder behaves a little bit different. A fairly complex decision tree is

necessary for deciding what to do with a frame. This decision tree is show in Figure 7.3

on page 68. The root is the gray shaded box at the upper left corner. If the destination

MAC address is a unicast address not destined for OnionCat the frame is dropped. If the

destination MAC address is a unicast for OnionCat and the destination IPv6 address does

not have the correct prefix, that frame is dropped.8 If the prefix is correct and the packet

is not an NDP advertisement message, it is forwarded regularly. The Ethernet header is

stripped off before forwarding. If it is an advertisement, an entry is made into the MAC

6The vendor ID is contained in the most significant three bytes of the MAC address.
7According to the IANA list of Ethernet numbers [19] this ID is not registered.
8This behavior has to be changed if routing based packet forwarding should be done. This is currently in

development, hence, it is not described within this document.
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Figure 7.3: Decision tree for frame validation on TAP device.

address table. An advertisement may arrive in response to a solicitation.

If the destination MAC address is a multicast address and the frame contains an NDP

solicitation for an OnionCat IPv6 address, an advertisement is sent and an entry is made

into the MAC address tables. If the frame contains an advertisement this might be an

unsolicited advertisement. An entry is made into the MAC address table. In all other

cases the frames are dropped.

The inbound direction which is handled by the Socket Receiver thread is far less complex.

First the IPv6 destination address of packets that arrived on the virtual circuits are looked

up in the MAC address table. If an entry exists, an Ethernet header is prepended being

the destination MAC address the one from the table entry. The source MAC address is

set to the local OnionCat’s MAC address which has been generated at program startup

as mentioned above. If no entry exists, an NDP solicitation message for the desired IPv6

address is generated and sent to the tunnel device. The frame itself is dropped because the

NDP advertisement will arrive asynchronously and cannot be waited for. Furthermore,

the advertisement will be handled by the Packet Forwarder as described above.

7.1.4 Outgoing Connection Handling

The setup of outgoing connections are handled by the SOCKS Connector thread. This

thread handles several I/O actions in parallel by using the select() system call. Select() is
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used by other threads too, but in that case every new connection passes through a simple

state machine to handle different states. The SOCKS Connector internally maintains a

list which contains connections whose setups are currently in progress. Every element

contains the desired destination IPv6 address, a retry counter and a variable containing

the element’s current state.

The thread usually blocks on a call to select(). It waits for three types of events. First, data

is coming in on the internal communication pipe as shown in Figure 7.1 on page 61. The

pipe is used by the Packet Forwarder to deliver new requests to the SOCKS Connector.

Second, it waits that the TCP connection to the Tor proxy gets ready. Third, it waits for

SOCKS responses coming in from the Tor proxy.

TCP CONNECT
connect

failed

CONNECTING
SOCKS request sent success

failed

NEW
success

READY ESTABLISHED

Figure 7.4: State diagram for outgoing connection setup.

Every new connection runs through the state diagram as shown in Figure 7.4. When a

new request comes in on the pipe, a new element is appended to the connection list. The

element’s initial state is NEW. The function connect() is called in non-blocking mode and

the state is changed to TCP CONNECT. The file descriptor is passed to the write set of

select(). After the connection gets ready it is tested for errors as shown in Listing 4.4 on

page 41. On failure it resets the state and retries from the beginning.

If the connection was successful, the state is changed to READY. A SOCKS request is

sent through it. The state is further changed to CONNECTING meaning that the virtual

circuit setup is in progress. The file descriptor is passed to the read set of select(). After

it got ready, the response is read. In case of failure it resets the state and tries again

from the beginning. In case of success, the state changes to ESTABLISHED. This is a

virtual state because actually the element is remove from the list. It is a new peer ready

for communication, hence, the element is inserted into the peer list. The peer list was

discussed in Section 7.1.1.
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7.2 Description of Software Modules

Section 7.1 covered several design issues and specific aspects worth to be mentioned because

of its complexity. This Section gives a brief overview about the structure of the code.

The source code is written in C using the GNU C Compiler gcc. The code conforms to

POSIX as far as possible and to my best knowledge. It is supported by the GNU autotools

[46] to make porting it to other OSes more easy. Originally it was developed on Debian

Linux, Kernel 2.6.26 on an i386 platform, later on an amd64 platform. The source code

can be downloaded on the project’s home page [13]. The source package contains several

files necessary for the autotools. The source code is kept within the subdirectory src.

All preprocessor macros and includes, structure definitions, and prototypes are found in

the header file ocat.h. Specifically for Cygwin, which is a POSIX-like environment for

Windows, additional headers exist. They are found in the subdirectory cygwin within src.

Cygwin does not have IPv6 support by default (see also Chapter 8). A patch exists but it

does not include every definition needed for IPv6. Thus, those missing are provided within

the OnionCat package. The header files are taken directly from OpenBSD and have been

slightly adapted were necessary.

OnionCat needs several global variables. They are combined together in a static structure

of type OcatSetup t. The structure and some other global initialization functions are kept

within ocatsetup.c. Functions regarding thread management are found in ocatthread.c. It

contains wrapper functions for thread initialization and termination. The SOCKS Connec-

tor thread and all functions associated with it are found in ocatsocks.c. Functions handling

NDP and the MAC table maintenance are kept in ocateth.c.

OnionCat supports logging to the console, to a logfile as well as to the syslog daemon.

Those functions are found in ocatlog.c. The functions for the peer list maintenance are

found in ocatpeer.c. The setup code for the tunnel device is found in ocattun.c for all UNIX-

like OSes and in ocat wintuntap.c for Windows. The code for Windows actually connects

to the OpenVPN TAP driver as has been explained in Section 4.2. The file ocatroute.c

contains the source code for the other threads. These are the Packet Forwarder, the Socket

Receiver, the Socket Acceptor, and the Socket Cleaner.

One additional thread exists which has never been mentioned until now. That is the

Controller thread. It was not mentioned because of its purpose mainly as a debugging

facility. It is a command line interface listening on TCP port number 8066 and it provides
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several commands for gathering information. As already mentioned, it was developed

mainly for debugging. Its source code is found in ocatctrl.c (and is somehow ugly. . . ). The

main() function and code for program initialization and shutdown is kept in ocat.c.

There are several additional support functions surrounding the core elements mentioned

above. Those are base32 encoding and decoding functions, onion-URL to IPv6 address

conversion, and similar functions. They are found in the files ocatcompat.c, ocatlibe.c, and

ocatv6conv.c.

The latest releases of OnionCat contain limited routing support for IPv6 as well as for

IPv4. This was not discussed because it is beyond the scope of this document. The

regarding functions are found in ocatipv6route.c and ocatipv4route.c.

7.3 Summary

This Chapter discussed and presented the chosen software architecture. It uses serveral dif-

ferent techniques to fulfill the requirements. Those are multi-threading and asynchronous

non-blocking I/O.

The threads being implemented and their interaction was explained. It containes two main

threads, one for the inbound one for the outbound direction. Some additional threads

surround them to complete its functionality.

Three specific aspects have been discussed. First, the packet fragmentation happening on

the VPN layer and the technique used to defragment it again. Second, the interaction

with the tunnel device in TAP mode using the NDP protocol. Third, the state machine

being used for the setup of outgoing connections.

Finally, a brief overview on modules and source files was given.
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OnionCat may be used in a wide range of different applications. It provides a kernel

interface, this is a network device to which an IPv6 address is assigned. Thus it provides

one of the most compatible interfaces possible. The whole background was extensively

discussed in the previous Chapters.

OnionCat is based on anonymizing transport layers like Tor,1 thus it may be used by

various user groups for the same reasons as they use, for example, Tor. OnionCat is an

extension of anonymizers. It adds features but it also extends the group of different users

and use cases.

The most important goal of OnionCat is to enable users to transport raw IP data across

an anonymizing network together with automatic IP address configuration. This has two

considerations.

1. It makes it easier use.

2. It creates a single logical virtual network segment so that all users share it. Thus

they are automatically connected virtually together.

The second item is achieved by every VPN, but different from any other VPN the OnionCat

network is an open network. Every user can take part without any restriction or limitation

in respect to network addressing. A user can decide to change his address at any time2

and he can also leave the network again without leaving traceable footprints. Without

further requirements one can use OnionCat to achieve the following use cases.

• Usage as an open anonymous network (This is described above.).

• Usage as real VPN for a privately set up closed user group.

1Currently it works just with Tor. Development of adapting it to I2P is in progress.
2This is the case only if the anonymizing transport allows this. But Tor does as well as I2P.
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Both are fitted to bypass surveillance or supervised networks of any kind. In the following

sections I will discuss the setup of those scenarios in detail, explain configuration and

debugging issues.

8.1 The Open Anonymous Network

The default application for OnionCat is to create an anonymous VPN which is publicly

accessible. It enables users to take part in the anonymous network. Once being a par-

ticipant one could either use the network’s services or provide ones own services or both.

A prerequisite is to have a network address. The addressing method was discussed in

6.1. Thus, we first need to install and configure the anonymizer and run a hidden service.

The following explanations refer to Tor as an anonymizing transport network, because

OnionCat was originally developed for Tor and it is known to run stable with it.

8.1.1 Installing and Configuring Tor

To install Tor there are basically two ways.

1. Install it with a package manager.

2. Compile and install it from source.

The first solution is probably the easiest way and usually suits most users’ requirements.

The installation depends on the operating system and distribution one uses. It requires

a package to exists for the targetted distribution which may not be the case. Then it is

required to be built from source. This also gives a little bit more flexibility in fine tuning

serveral build options.

To give some examples, on Debian Linux (www.debian.org) type

% sudo apt i tude i n s t a l l t o r

on FreeBSD (www.freebsd.org) the package is added with

% sudo pkg add \

f t p : // f tp . f r e eb sd . org /pub/FreeBSD/ r e l e a s e s /amd64/7.1−RELEASE/\

packages / s e c u r i t y / tor −0 . 2 . 0 . 3 1 . tbz
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and on OpenBSD (www.openbsd.org) with

% sudo pkg add \

f t p : // anga . funk f eue r . at /pub/OpenBSD/4.4/\

packages /amd64/ tor −0 . 1 . 2 . 1 9 . tgz

respectively.3 Details on package installations and package mirrors should be looked up

on the operating system’s or distribution’s main sites.

For Windows and MacOS X you should follow the links on the download page of the Tor

project [44]. For both OSes Vidalia (www.vidalia-project.org) is installed together with

Tor. Vidalia is a configuration and control GUI for Tor which is also available for Linux.

After successful installation we need to add a hidden service. This is done by either

editing the Tor configuration file torrc or by adding it with Vidalia. The latter results

in Vidlia editing the configuration file of Tor. The configuration file is usually located in

/etc/tor/torrc or /usr/local/etc/tor/torrc. On Windows it is located in C:\Documents and

Settings\<user>\Vidalia\torrc.

Add the following two lines to the configuration file:

HiddenServiceDir /var/lib/tor/hidden_service/

HiddenServicePort 8060 127.0.0.1:8060

On Windows the fullpath may be omitted, for example, by just configuring HiddenSer-

viceDir hidden service. The directory will be created in C:\Documents and Settings\<user>.

The HiddenServiceDir directive specifies the directory where to locate the private key for

the hidden service. HiddenServicePort specifies that all TCP connections, which are ded-

icated to virtual destination port 8060 from within Tor, are forwarded to the local host

(127.0.0.1) TCP port 8060. This is the port that OnionCat listens to by default, as has

been said in Section 7.1.

Now start Tor, but make sure that the system clock is correct beforehand. Tor will then

create a directory at the location specified by HiddenServiceDir, as well as put two files

into it: private key and hostname. The first one contains the private key associated with

the local hidden service. If running a service for other users, web service for example, it

3Both links are valid for today, 5th of March 2009, for the stable releases FreeBSD 7.1 and OpenBSD 4.4

for amd64 machines.
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is a good idea to backup this key to a safe place. It is with this key that a specific hidden

service is uniquely identified. If the machine crashes and all data is lost, the hidden service

can be recovered by copying the backed up key to the hidden service directory on the new

machine. The key is a 1024 bit RSA key.

The file hostname contains the hostname which is used by the Tor network to lookup and

connect to this hidden service. It iss the onion-URL. Look into the file.

% sudo cat /var / l i b / to r / h i dd en s e r v i c e /hostname

It contains a string like a5ccbdkubbr2jlcp.onion. Vidalia will display the hostname in the

“Provided Hidden Services” field in the “Services” settings window. You will need this

hostname for OnionCat setup as explained below.

Have a look at the log file to see if Tor is working. On Unix this is usually located at

/var/log/daemon.log or /var/log/messages. If not have a look at the Tor configuration file

torrc. If using Vidalia, then just click on “Message Log”.

If Tor works correctly it will say “Tor has successfully opened a circuit. Looks like client

functionality is working.”. Note that Tor may need some time (a few minutes) to boot.

8.1.2 Installing OnionCat

Now, after successful installation of Tor we can run OnionCat. As far as there are no

packages4 OnionCat can be built from source. The steps are

1. Prepare build environment.

2. Build and install OnionCat.

3. Configure and test OnionCat.

On Unix-like OSes step 1 is not very difficult and it is most likely to be already setup.

All that OnionCat nees is a C compiler, usually GNU gcc and the GNU make utility.

On Windows we also need those two programs. It is necessary to create a POSIX-like

environment beforehand. It is done with Cygwin [5] (www.cygwin.com). Using Cygwin is

more difficult, hence, I will explain it in a separate Section 8.1.3. If you are going to install

OnionCat on Windows read Section 8.1.3 before.

4The package building process can be very time consuming. There are already packages for Debian,

Ubuntu, and OpenBSD, and probably more. Others are in preparation.
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To check if gcc and make exist, on the shell just type gcc. If it is installed it will say “gcc:

no input files”. If not, the answer will be “command not found: gcc” or similar. If make is

installed it will respond “make: *** No targets specified and no makefile found. Stop.”. If

one of those tools is missing install it with your package manager. On Debian Linux this

is done with

% sudo apt i tude i n s t a l l gcc

Now download an OnionCat source tarball from [14] www.cypherpunk.at/ocat/download/.

Untar it, changed to the directory and configure it.

% tar x f z onioncat −0 .1 . 12 . r487 . ta r . gz

% cd onioncat −0 .1 . 12 . r487

% ./ con f i gu r e

Then compile and install it. The latter as root.

% make

% sudo make i n s t a l l

Now you should be able to run OnionCat by typing ocat. If run without any argument

it will ouput version, author, compile date, and a short command usage guide, listing all

available command options.

8.1.3 Installing Cygwin on Windows

To run OnionCat on Windows, create a POSIX-like environment for it. Go to the download

page found at [5] www.cygwin.com and download and run the Cygwin installer. It asks

some questions, but click continue until you reach the package selection menu and select

“gcc: C-Compiler” and “make: GNU ’make’ utility”. Both are found in the “devel” section

of the package selection window. Continue with the installation process until finished.

OnionCat is IPv6-based but Cygwin unfortunately does not support IPv6 at the current

stage of development. But luckily there is an IPv6 patch available at win6.jp/Cygwin/

[21] by Jun-ya Kato. Download the package and extract it at the top level of Cygwin

which usually is C:\cygwin. It will install several files and a new Windows library at

C:\cygwin\bin\new-cygwin1.dll. Rename the existing file cygwin1.dll to something else and

then rename new-cygwin1.dll to cygwin1.dll.

The next step is to install the TAP driver. This is a virtual network interface, usually called

a tunnel device. The background on tunnel devices has been explained in the Sections 4.1
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and 4.2. It connects to the kernel’s routing process on one end and provides a userland

interface on the other interface. Applications can connect to this interface and accept

certain low level packets as routed by the kernel due to the nature of IP(v6) routing

characteristic.

Go to [32] openvpn.net and download the OpenVPN Windows installer. To run Onion-

Cat, OpenVPN itself is not necessary but the installer contains the TAP driver which

was developed by the OpenVPN project. It is licensed under GPL version 2 with some

additions.

After downloading, execute the installer. It will display an options menu where you can

un-select everything except the TAP driver. Continue with installation.

After successful installation click on the Cygwin icon on the desktop and continue reading

at Section 8.1.2.

8.1.4 Configuring OnionCat

To configure OnionCat for its primary intention as client for the open anonymous network,

we need the onion-URL which is located in the hostname file in the hidden service’s direc-

tory (see Section 8.1.1). When running OnionCat the first time you probably should run

OnionCat in foreground to make sure that everything works correct.5

In the shell, run OnionCat with the command as show below. As argument put your

hidden service hostname.

% sudo ocat −B wq52ql3uxgcxqjon . onion

OnionCat will produce some output. There might be errors like “select encountered error:

”Interrupted system call”, restarting”. As long as this just happens during startup it can

safely be ignored. There might also be a the warning “can’t get information for user ”tor”:

”user not found”, defaulting to uid 65534” which can also be ignored.

It may fail starting with the error messages “could not open tundev /dev/tun0 : No such

file or directory” and “error opening TUN/TAP device”, if OnionCat did not find a suitable

tunnel device. This may be the case if either the name of it is different or if no such

device exists. The tunnel device is a kernel module. The tun kernel module needs to be

loaded in order to work. Check with lsmod (on Linux) if the module is loaded. Load it

5At the time of writing this document (March 8, 2009) OnionCat will fail on Windows if not run in

foreground.
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with modprobe tun if it is not present. After loading the module, the character device tun

should appear somewhere within the /dev directory. See Section 4.1 for more details about

the location of the device. Restart OnionCat again.

Now check if everything is configured correctly. Issue the command ifconfig. It lists several

stanzas. One for every registered network device. One should read tun0 and have an IPv6

address assign. The appropriate line looks like “inet6 addr: fd87:d87e:eb43:b43b:a82f:74b9:-

8578:25cd/48 Scope:Global”. If the tun0 stanza exists but has no IPv6 address assigned,

OnionCat may have failed assigning the address. In some very rare cases this may happen

for a currently unknow reason. In that case assign the address manually. In order to do

this, first figure out your onion-URL as described in Section 8.1.1 and issue the command

% ocat − i wq52ql3uxgcxqjon . onion

fd87 : d87e : eb43 : b43b : a82f : 74 b9 : 8578 : 25 cd

It returns the IPv6 address associated with the onion-URL. Now configure the address

with ifconfig.

% sudo i f c o n f i g tun0 add fd87 : d87e : eb43 : b43b : a82f : 74 b9 : 8578 : 25 cd/48 up

Of course, you must supply your own IPv6 address. This is just an example. If the

command fails the syntax may be different on your system. Lookup the correct syntax of

ifconfig in the appropriate man page by issuing the command man ifconfig.

Now check the IPv6 routing table with the command

% net s t a t −nr6

The digit ’6’ might be omitted on some OSes. It lists all entries of the kernel’s IPv6 routing

table and it should contain at least one entry exactly like shown below.

fd87:d87e:eb43::/48 :: U 256 0 0 tun0

Important are the first and the last columns. If there is no such entry which could happen

in some very rare cases add the route manually.

% sudo route −−i n e t 6 add fd87 : d87e : eb43 : : / 4 8 tun0

The command listed above is valid for Linux. OpenBSD syntax is slight different.

% sudo route add −i n e t 6 −net 3 0 00 : : \

−p r e f i x l e n 48 fd87 : d87e : eb43 :365b :148d : d42e : fdc0 : 6 b7b

If in doubt lookup the correct syntax in route man page.
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8.2 Using the Global Anonymous Network

If everything is setup correctly as described in the previous Sections you should now be

able to use the OnionCat global anonymous network. First try to ping one of the existing

hidden OnionCat services. Currently there are a few services known to be permanently

online which are shown in the table of Figure 8.1.

IPv6 address Hostname

fd87:d87e:eb43:f683:64ac:73f9:61ac:9a00 dot.aio

fd87:d87e:eb43:2243:5f84:5b12:7bb5:bbc2 irc.onion.aio

fd87:d87e:eb43:f947:ad24:ec81:8abe:753e ping.onion.aio

fd87:d87e:eb43:744:208d:5408:63a4:ac4f mail.onion.aio

Figure 8.1: List of currently available OnionCat services.

• dot.aio6 is a web-based service registration directory. It is intended to let OnionCat

service providers register their service in order to be found by others. It is not

required for a service to be registered but it enhances usability for new users. They

can browse this page and lookup existing OnionCat services.

• irc.onion.aio basically is an Internet Relay Chat7 (IRC) server. For a quick introduc-

tion have a look at Wikipedia at en.wikipedia.org/wiki/Internet Relay Chat. There

is also a web-based audio stream (“OnionCat Radio”) available on port 1337 at this

same address and a new, web-based community plattform called “Whose Space?”.

• ping.onion.aio currently does nothing than just respond to echo requests.

• mail.onion.aio is a combined SMTP/POP3 server. It accepts mails on port 25 for

recipients of the domain onion.aio (e.g. eagle@onion.aio which is the email address of

the author). Users can fetch mail using the POP3 protocol on port 110. Mailboxes

need to be registered in advance. Unfortunately there is currently no automatic

registration service available. Post an email to onionmail@onion.aio on this server in

order to get an account. Note that this is completely anonymous as long as you do

not send personal information across with your email.

6The term “aio” refers to anonymous Internet overlay.
7IRC is based on the protocol definition of RFC1459 [31].
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Try to ping one of those hosts by issuing the ping6 command which is ping for IPv6.

% ping6 fd87 : d87e : eb43 : 2 243 : 5 f84 : 5 b12 : 7 bb5 : bbc2

PING fd87 : d87e : eb43 : 2 243 : 5 f84 : 5 b12 : 7 bb5 : bbc2 56 data bytes

64 bytes from fd87 : d87e : . . . : 7 bb5 : bbc2 : icmp seq=1 t t l =64 time=3376 ms

64 bytes from fd87 : d87e : . . . : 7 bb5 : bbc2 : icmp seq=2 t t l =64 time=3404 ms

64 bytes from fd87 : d87e : . . . : 7 bb5 : bbc2 : icmp seq=3 t t l =64 time=5358 ms

64 bytes from fd87 : d87e : . . . : 7 bb5 : bbc2 : icmp seq=4 t t l =64 time=4613 ms

After some time it will respond and list the round trip time (RTT) in the right most

column. Be patient, Tor may need up to one minute for the first time it connects to a

hidden service. After the connection is setup the RTT will be between 0.5 and 10 seconds.

Currently there are many efforts within the Tor project to improve connection setup time

and RTT in respect to hidden services.

If everything worked until now you can start using the network as you do with Internet

with the sole exception that there is no DNS. It requires the user to use plain IP addresses

instead of domain names. As long as there is no feasible DNS solution, the hostnames can

be registered locally. On all Unix-like OSes this is easily done by just putting IP address

hostname pairs into the file /etc/hosts. This is possible even on Windows. The file is

usually located at C:\WINDOWS\SYSTEM32\drivers\etc\hosts.

8.3 Summary

This Chapter gave an overview about installation and usage of OnionCat. It included

prerequisites for installation. These are build tools. Specifically for Windows, additional

software is required. This is the POSIX-like environment Cygwin and the TAP driver,

which is the tunnel device for Windows.

Finally, a list of available services together with a short description was presented.
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This paper describes an add-on for anonymizing networks like Tor. It interferes with

the IP routing process of the kernel and creates a VPN on top of anonymizing networks.

Within this document the primary development ideas of OnionCat have been shown. Part

I introduced the reader into details regarding cryptography, networking, and operating

systems, to be able to follow the explanations of Part II. In that respectively, the issues

and solutions regarding an anonymous VPN have been described.

We do address translation from internal addresses used by Tor into IPv6 addresses. This

is one of the most important issues regarding this dynamic peer-to-peer VPN.

Based on those ideas, an OpenSource project namely OnionCat evolved. It is used as

a reference implementation. Most software internals, as well as difficult parts regarding

software development have been explained.

The last Chapter gave a more than brief step-by-step installation, configuration, and usage

guide for OnionCat. Additionally, there are already some services available which have

been presented in brief.

The OnionCat software is still in heavy development and may not work on every system

without further intervention, but we managed to port it to major operating systems like

Windows XP and MacOS X. Of course, it works out of the box on Linux.

During this work several new problems turned out to exists. First, this the DNS problem,

which is still not solved sufficiently. OnionCat uses IPv6 addresses, but it would be more

convenient for users if the use of hostnames would be possible. As has been said in

Chapter 5, providing name resolution with the Internet DNS might leak information which

is contrary to what an anonymizing network should do.

Another way would be to provide a name service within the OnionCat network. This

is done yet on the hosts mail.onion.aio and irc.onion.aio (see Section 8.2), but this is ex-
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perimental. It also creates the new problem of the existence of two DNS systems acting

independently of each other. This in turn introduces new problems. To summarize, a

project dealing with the general question “How to resolve hostnames to OnionCat IPv6

addresses?” is suggested.

OnionCat is based on Tor yet. Since November of 2008 some efforts are undertaken to

adapt OnionCat to I2P [18], being another anonymizing network. I2P also provides a

SOCKS interface and, obviously, it has an addressing method for its services. Although

at a first glance it looks easy to adapt OnionCat to I2P, it introduces a lot of difficulties.

Those are encountered when assuming a client, running Tor and I2P in parallel. In fact

beside those two, other anonymizing networks exist. This right away leads to the question:

“How to create an abstraction layer on top of specific anonymizers being a generic interface

in respect to protocol and addressing issues?”.

During software development and testing it showed up that the virtual circuits created by

Tor are of very low performance. This is, a low bandwidth (2-10 kbytes) and a very high

round trip time. This is a potential subject to improvement.

The MTU size of the tunnel device was discussed. It is left at the default value yet, but

two interesting questions came up. First, if there is some other MTU size which fits better

for this purpose. Second, if OnionCat should do IP fragmentation in order to get interop-

erability of tunnel devices with different MTU sizes.

For OnionCat in particular, several issues came up. As has been explained in Section 6.2,

IPv6 packets are sent directly across the VPN layer. No additional header is prepended

for performance reasons. But still, the IPv6 header needs some amount of data. To

reduce this, header compression could be implemented. RFC2507 [8] suggests methods for

compressing various headers.

When operating in TAP mode, it could be an option to provide DHCP6, in order to

support better autoconfiguration.

As has been explained in Section 7.1, authentication of incoming connections is not solved

sufficiently. Several ideas have been presented, being proposals for solutions.

These ideas presented within this document and the OnionCat project in particular are

subject to create a new generation of the Internet, as we know it today. The user group

is very small yet, but it may attract more and more people. It gives back the personal

freedom which has been and still is silently restricted by authorities.
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A Neighbor Discovery Messages

Figure A.1 shows a complete example of what the solicitation message of A to B looks

like. Every field shown as a box has a short descriptive word in the first line, the actual

value in the second line and the width of the field in bits in square brackets. One complete

line of the diagram has 64 bits which are 8 bytes. Note that the IPv6 addresses are shown

as a single line although they have 16 bytes. This is just to save place.

The first line contains the Ethernet header as described in Section 3.2. It has a length of

14 bytes. The lines 3 to 5 contain the IPv6 header as described in Section 3.1. Its length

is 40 bytes. The lines 6 to 8 contain the solicitation message in the appropriate format of

an ICMPv6 message as described above. It has a length of 32 bytes. The total length of

the frame is 86 bytes.

Figure A.2 shows the neighbor advertisement which is the response to the message of

Figure A.1. Basically, it has the same structure as the solicitation but it is not a broad-

cast/multicast message any more. It is unicasted which means it is specifically designated

from the advertisement sender to the original solicitation sender.
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A Neighbor Discovery Messages

←− 64 Bits/8 Bytes −→

destination MAC
33:33:00:00:02:01 [48]

source MAC
00:1B:24:3A:C5:4F [48]

type
0x86DD

version
6 [4]

class
0 [12]

label
0 [16]

length
32 [16]

next
58 [8]

hlim
255 [8]

source IPv6 address
1234:5678:9ABC::10 [128]

destination IPv6 address
ff02::1:ff00:201 [128]

type
135 [8]

code
0 [8]

checksum
x [16]

data
0 [32]

destination IPv6 address
1234:5678:9ABC::201 [128]

option
1 [8]

length
1 [8]

source MAC address
00:1B:24:3A:C5:4F [48]

Figure A.1: Neighbor solicitation message.

←− 64 Bits/8 Bytes −→

destination MAC
00:1B:24:3A:C5:4F [48]

source MAC
00:50:56:9A:21:18 [48]

type
0x86DD

version
6 [4]

class
0 [12]

label
0 [16]

length
32 [16]

next
58 [8]

hlim
255 [8]

source IPv6 address
1234:5678:9ABC::201 [128]

destination IPv6 address
1234:5678:9ABC::10 [128]

type
136 [8]

code
0 [8]

checksum
x [16]

data
0x40000000 [32]

destination IPv6 address
1234:5678:9ABC::201 [128]

option
2 [8]

length
1 [8]

source MAC address
00:50:56:9A:21:18 [48]

Figure A.2: Neighbor advertisement message.
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B Reading from the Windows TAP Driver

int win read tun (char ∗buf , int n)

{

TapData t ∗ tapData = &tapData ;

DWORD len = −1, e r r ;

i f ( ! ReadFile ( tapData−>fd , buf , n , &len , &tapData−>read over lapped ) )

{

// check i f I /O i s s t i l l pending

i f ( ( e r r = GetLastError ( ) ) == ERROR IO PENDING)

{

for ( e r r = WAIT TIMEOUT; e r r == WAIT TIMEOUT; )

{

i f ( ( e r r = WaitForSingleObject ( tapData−>read event ,

SELECT TIMEOUT ∗ 1000)) == WAIT FAILED)

log msg (LOG ERR, ”Error = %ld ” , GetLastError ( ) ) ;

}

i f ( ! GetOverlappedResult ( tapData−>fd , &tapData−>read over lapped ,

&len , FALSE) )

{

// GetOver lappedResul t may f a i l i f b u f f e r was too sma l l

e r r = GetLastError ( ) ;

log msg (LOG WARNING, ”Error = %ld ” , e r r ) ;

}

}

}

return l en ;

}

Listing B.1: Non-blocking read on Windows.
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Glossary

aio Anonymous Internet Overlay., 79

Asymmetric encryption Encrypting and decrypting data using a key pair of

two different keys., 6

Authentication A concept to prove that a piece of information is au-

thentic., 7

Broadcasting An addressing method used to address all hosts on a

segment., 17

C A system oriented programming language., 27

Character device A kernel interface on Unix-like OSes., 28

Checksum It allows simple integrity checking of data., 20

Collision Used to refer to the case if two different inputs to a

hash function result in the same output., 9

Cygwin A POSIX-like environment for Windows., 76

Data-link layer Layer 2 of the OSI model creating data structures.,

11

Digital signature Message authentication with asymmetric cryptogra-

phy., 9

Driver A low-level module of a Kernel., 27

Endianess The byte order of data during transmission., 16

Ethernet A major layer 2 multi-access protocol., 12

File descriptor Identifier for an I/O channel., 38
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Glossary

Fingerprint An identifier for a piece of data., 9

Forwarding The action of delivering packets to network inter-

faces., 12

Fragmentation The property of data units being split apart., 65

Frame The data unit used in layer 2., 11

Hash function A function for computing message digests., 9

Hidden Service A service being anonymously hidden within the Tor

network., 43

I/O channel Allows data exchange between processes., 38

ICMP Internet control message protocol., 18

IPv6 A network protocol (of layer 3)., 12

IPv6 address A 128 bit wide address used by the IPv6 protocol.,

14

Kernel The innermost part of an operating system., 26

MAC (crypto) Message authentication code with symmetric cryp-

tography., 8

MAC (network) Media access control. An intermediate layer of layer

2., 16

MAC address The type of address used by the Ethernet protocol.,

16

Message authentication A method for authenticating messages., 8

Message digest An identifier for a piece of data., 9

MTU Maximum Transfer Unit. It is a physical limitation

to the maximum size of a frame., 16

Multi-access protocol A protocol based on a physical layer that allows in-

terconnection of more than two hosts at the same

time., 11
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Glossary

Multi-processing The capability to run several processes in parallel.,

37

Multi-threading The capability to execute several threads within a

process in parallel., 37

Multicasting An addressing method used to address a group of

hosts on a segment., 17

NDP Neighbor discovery protocol. Used to associate layer

2 addresses to IPv6 addresses., 18

Neighbor advertisement Usually the response to a neighbor solicitation., 19

Neighbor solicitation A multicast message to find specific nodes on a seg-

ment., 18

Netmask A special notation to define the length of a prefix.,

14

Network layer Layer 3 of the OSI model. Creates logical networks.,

12

onion-URL An identifier for hidden services., 43

OS Operating system. The base software running on a

computer system., 26

OSI model A model used in the field of networking to categorize

network protocols and their dependencies., 11

Packet forwarder A thread handling packets coming in on the tunnel

device., 61

Payload The actual information being carried within a data

unit., 15

Peer list The list of virtual circuits and their associated IPv6

addresses., 60

Physical layer The lowest layer of the OSI model describing physical

parameters., 11
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Glossary

Port number A layer 4 address. It is used at least by UDP and

TCP., 13

Prefix The network part of an IPv6 address., 13

Process An atomic unit being executed in the userland., 36

Routing process Decision process of where to forward IP packets., 12

RSA A public key algorithm capable of doing encryption

and digital signatures., 9

Segment Usually a set of nodes that are physically connected

together., 11

SHA-1 A cryptographic hash function., 9

Socket A communication endpoint of an I/O channel., 27

Socket acceptor A thread accepting incoming connections., 62

Socket cleaner A thread doing housekeeping., 63

Socket receiver A thread handling packets coming in on the virtual

circuits., 61

SOCKS A protocol for proxying TCP sessions., 22

SOCKS connector A thread handling setup of outgoing connections., 62

Symmetric encryption Encrypting and decrypting data with a single key., 5

System call A function provided by the OS., 27

TAP mode A tunnel device operating on layer 2, Ethernet in

particular., 31

TCP A reliable layer 4 protocol., 13

TCP/IP stack Part of an OS which implements those protocols., 27

Tor An anonymizing network., 43

Transport layer Layer 4 of the OSI model. It creates data streams.,

13

Transport protocol Protocols of layer 4., 21

TUN mode A tunnel device operating on layer 3., 31
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Glossary

Tunnel device A kernel driver being used to access the routing pro-

cess., 28

Tunnel header A header prepended to tunnel device messages., 31

UDP An unreliable layer 4 protocol., 13

Unix A specific type of operating system architecture., 26

User space A different term for userland., 27

Userland The area of a computer system outside of the OS., 27

Virtual circuit A virtual connection between two hosts., 23

VPN A network based on virtual circuits., 23

VPN layer A stack of layers used to encapsulate payload., 24
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