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Abstract 

Combined positron emission tomography (PET) – magnet resonance imaging 
(MRI) scans can be used in combination with the tracer O-(2-[18F] Fluoroethyl)-L-
thyrosine (18F-FET) to dive deeper into the metabolic dynamics of gliomas. The 
clinical outcomes of gliomas are dictated by the specific type of tumor cells 
involved, such as astrocytes and oligodendroglial cells. Research initiatives are 
underway to enhance the diagnostic precision of prevalent imaging techniques, 
particularly PET/MRI scans. Despite the significance of this technique in 
diagnostics and treatment planning it faces a lot of challenges.  

In order to achieve accurate diagnosis, it is important to quantifying the tracer 
uptake. The quantification process demands the measurement of the input 
function, indicating the cumulative availability of the radiotracer in arteries. 
Traditionally, this was achieved via arterial cannulation. However, a non- invasive 
approach utilizes an Image Derived Input Function (IDIF). Despite its advantages, 
this method faces complications due to the partial volume effects of the PET 
scanner's limited spatial resolution.  

The primary objective of this thesis was to enhance a pharmacokinetic prototype 
for 18F-FET PET/MRI for gliomas by incorporating a quantitative accurate partial 
volume correction method, aiming to enhance the accuracy in kinetic modeling. 
This involved evaluating the time-sensitive activity concentration in the tissue near 
the carotid arteries. As a result, a spill-out and spill-in correction was developed 
that considers both time and tissue factors.  

Patient movement during PET scans introduces artifacts and blurring, leading to 
inaccurate quantification of tracer distribution. To address the challenge of patient 
movement in PET imaging a motion correction alongside the IDIF was adapted.  

The program underwent testing with a study group of 7 FET-PET/MRI patient data. 
For an effective comparison between the uncorrected and corrected IDIF the area 
under the curve, peak activity, paired t-test, and comparison with literature were 
utilized.  

The developed IDIF provides quantitatively accurate representations of tracer 
concentrations over time for kinetic modeling. This confirms the potential to 
eliminate the need for invasive arterial blood sampling.  



V 

Kurzfassung 

Bei kombinierten Positronen-Emissions-Tomographie (PET)- 
Magnetresonanztomographie (MRT)-Scans wird vor allem der Tracer O-(2-[18F] 
Fluorethyl)-L-thyrosin (18F-FET) verwendet, um die Stoffwechseldynamik von 
Gliomen genauer zu untersuchen. Die klinischen Ergebnisse von Gliomen hängen 
von der spezifischen Art der Tumorzellen ab, wie z. B. Astrozyten und 
Oligodendrogliazellen. Derzeit laufen Forschungsinitiativen zur Verbesserung der 
diagnostischen Präzision der gängigen Bildgebungsverfahren, insbesondere der 
PET/MRI-Scans.  

Um eine genaue Diagnose zu erhalten, ist es wichtig, den Tumor zu quantifizieren. 
Der Quantifizierungsprozess erfordert die Messung der Eingangsfunktion, die die 
kumulative Verfügbarkeit des Radionuklids in den Arterien angibt. Traditionell 
wurde dies durch eine arterielle Kanülierung erreicht. Ein modernerer und nicht- 
invasiverer Ansatz ist die Verwendung einer Eingangsfunktion. Trotz ihrer Vorteile 
ist diese Methode aufgrund des Partialvolumeneffekt und der begrenzten 
räumlichen Auflösung des PET-Scanners mit Komplikationen verbunden.  

Das Ziel dieser Arbeit ist die Verbesserung eines pharmakokinetischen Prototyps 
für 18F-FET PET-MRT für Gliome. Durch die Einbeziehung einer quantitativen, 
genauen Methode zur Korrektur von Partialvolumeneffekten, um die Genauigkeit 
der kinetischen Modellierung zu erhöhen. Dazu wurde die zeitabhängige 
Aktivitätskonzentration im Gewebe in der Nähe der Karotis Arterien ausgewertet. 
Als Ergebnis wurde eine Spill-out-und -in Korrektur entwickelt, die sowohl Zeit- als 
auch Gewebefaktoren berücksichtigt.  

Patientenbewegungen während PET-Scans führt zu Artefakten und Unschärfe 
was eine ungenaue Quantifizierung der Tracer-Verteilung zur Folge hat. 
Deswegen wurde neben der IDIF zusätzlich eine Bewegungskorrektur entwickelt.  

Das Programm wurde mit einer Studiengruppe getestet, die aus 7 FET-PET-MRT- 
Patientendaten bestand. Für einen effektiven Vergleich zwischen der 
unkorrigierten und der korrigierten Eingangsfunkton wurde die Fläche unter der 
Kurve, die Spitzenaktivität, ein gepaarter t-Test und der vergleich mit der Literatur 
herangezogen. Die entwickelte Eingangsfunkton liefert eine quantitativ genaue 
darstellung der Tracerkonzentrationen im Zeitverlauf für die kinetische 
Modellierung.   
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1 Introduction  

Gliomas represent approximately 50% of primary brain tumors in adults. These 
tumors arise from glial, astrocytic, or oligodendroglial cells and vary in their 
aggression and clinical courses based on molecular markers. The survival rates 
span from 1.5 year to over a decade. Critical for patient management is the 
identification of specific biomarkers, notably the presence or absence of IDH gene 
mutations. The WHO 2021 classification separates astrocytomas from 
glioblastoma based on these mutations into IDH-mutant and IDH-wildtype 
categories. Additionally, diagnosing the prevalent oligodendroglioma requires the 
detection of 1p/19q codeletion combined with an IDH mutation [1]. 

Magnetic Resonance Imaging (MRI) stands as the foremost imaging technique for 
the initial evaluation and subsequent monitoring of gliomas. Yet, MRI encounters 
certain limitations in glioma management. Specifically, the contrast enhancement 
utilized for tumor assessment is non-specific, majorly reflecting disruptions in the 
blood-brain barrier. This disruption can result from various non-tumorous 
processes, including treatment-induced inflammation, postoperative alterations, 
seizure episodes, ischemia, radiation effects, and necrosis. Moreover, gliomas 
sometimes don't exhibit blood-brain barrier disruptions leading to MRI contrast 
enhancement, posing a challenge when examining low-grade gliomas or those 
with anaplastic elements. While non-enhancing tumor sections can be viewed on 
T2w- or FLAIR MRI, distinguishing between tumorous tissue and surrounding 
edema, ischemic damage, post-surgical modifications, or radiation impacts post- 
therapy can be challenging [2], [3].  

Positron emission tomography (PET) scans with the tracer 18F-fluoroethyltyrosine 
(18F-FET) have been recognized as a valuable functional imaging technique, 
addressing certain MRI-based limitations in glioma diagnosis and monitoring. 
Particular, diagnostic methods that focus on quantifying tracer uptake behavior, 
represented as standardized uptake value (SUV) curves from dynamic PET scans, 
have been researched to differentiate between low and high-grade gliomas. 
Nonetheless, the underlying factors influencing observed tracer uptake remain 
elusive [4], [5].  
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To address these obstacles in 18F-FET PET studies, pharmacokinetic modeling 
of FET uptake is being explored [6], [7]. The distinct tracer uptake curves observed 
for various glioma grades suggest that FET uptake may follow unique kinetic 
models depending on the glioma type [4], [6].  

To evaluate this hypothesis, an initial pilot study was conducted by Poglitsch [7] at 
the university hospital of Vienna. The software processes dynamic PET data and 
a contrast enhanced T1w MRI. It auto-generates a volume-of-interest to extract an 
image-derived input-function (IDIF) from the internal carotid artery using MRI data. 
Subsequently, it conducts pixel-wise modeling across the brain with four kinetic 
models and selects the best fit for each pixel.  

1.1 Problem 
Despite the significance of the 18F-FET-PET MRI in diagnostics and treatment 
planning it comes with a lot of challenges.  

One of the challenges in achieving accurate diagnosis lies in quantifying the tracer 
uptake. The quantification process demands the measurement of the input 
function, indicating the cumulative availability of the radiotracer in arteries. 
Traditionally, this was achieved via arterial cannulation. However, a more 
contemporary and non- invasive approach utilizes an Image Derived Input 
Function (IDIF). Despite its advantages, this method faces complications due to 
the partial volume effects, a byproduct of the PET scanner's limited spatial 
resolution.  

Another challenge is patient movement during the long PET/MRI scan, which can 
take up to an hour. Even minimal movement introduces motion artifacts between 
the frames which leads to misalignment of the region of interest (ROI). Since the 
ROI is the carotid artery, a very small and sensitive structure, any movement can 
cause significant shifts, compromising the accuracy of the imaging. 

Poglitsch [7] has developed a pharmacokinetic prototype at the University Hospital 
of Vienna. By modeling the dynamic behavior of the 18F-FET tracer, this prototype 
offers a deeper understanding of tracer uptake dynamics in gliomas, allowing for 
more precise tumor analysis.  

In order to increase the accuracy and expand the prototypes capabilities 
implementation of a motion correction and quantitative accurate IDIF are 
necessary.  
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1.2 Goal 
To enhance the prototype's capabilities and accuracy, this thesis will focus on 
integrating a motion correction and partial volume correction. The primary objective 
of this thesis is to incorporate a quantitative accurate partial volume correction 
method, aiming to enhance the accuracy in kinetic modeling, especially when 
extracting the image- derived input-function. This will involve evaluating the time-
sensitive activity concentration in the tissue near the carotid arteries. As a result, 
a spill-out and spill-in correction will be developed that considers both time and 
tissue factors. Ultimately, this thesis will deliver a motion correction and 
quantitatively accurate IDIF for effective kinetic modeling.  

1.3 Main Hypothesis 
1. The developed Image-Derived Input Function and motion correction can 

provide quantitatively accurate representations of tracer concentrations 
over time for kinetic modeling, eliminating the need for invasive arterial 
blood sampling. 

1.4 Method and Structure 
The data used for this thesis consists out of 7 retrospective FET-PET/MRI patient 
datasets which were used for the development of the kinetic modelling tool 
prototyped by Poglitsch. The study was approved by the ethics committee of the 
Medical University of Vienna, under code EK 1075/2020. 

Poglitsch chose Python for his dissertation due to its open-source nature, strong 
community support, and extensive libraries, especially for image processing. This 
decision also influenced the use of Python to develop a simple motion correction 
and quantitatively accurate IDIF.  

The objective of this thesis is to adapt and implement a motion correction alongside 
an accurately quantified IDIF. To evaluate its accuracy, the uncorrected IDIF will 
be compared with the corrected one.  

To quantitatively assess the effectiveness of the implemented corrections two 
parameters and a paired t-test for statistical evaluation was conducted. 

1. Area under the Curve  
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This metric is instrumental in quantifying the total trace concentration over 
time, offering a comprehensive view of the tracer's behavior within the 
region of interest. 

2. Peak Activity:  
The peak activity identifies the highest tracer concentration observed, 
which is critical in assessing the success of the correction methods in 
enhancing the image quality. 

3. Paired t-test:  
This statistical test will be used to compare the IDIF values before and after 
the application of corrections. It will help determine the statistical 
significance of the changes by the correction techniques. 

Further Time-Activity-Curve graphs will be created to compare the corrected and 
uncorrected IDIF.  

Since a ground truth, such as arterial blood sampling is missing the effectiveness 
of the PVC will be validated through a comparative analysis with existing literature.  
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2 Fundamentals 

This thesis describes a special area of nuclear medicine and medical physics. In 
this chapter the medical, physical, and programming basics are explained.  

2.1 Gliomas 
Tumors of the Central Nervous System (CNS) are classified based on the cells 
from which they originate. For example, meningiomas develop from the brain's 
meninges, embryonic tumors from stem cells, hematolymphoid tumors from blood-
forming cells, and gliomas from the brain's glial cells. Glial cells have various 
functions in the brain: amongst others they envelop nerve cells for structural 
support, electrical insulation, nerve cell sustenance, and play a role in forming the 
blood-brain barrier. Most glial cells in the CNS are astrocytes and 
oligodendrocytes, forming a complex network throughout the brain [1], [8]. 

Gliomas are the second most common primary brain tumors, with an incidence 
rate spanning from 6.6 to 10.5 per 100,000 people. “Glioma" refers to various types 
of malignant glial cell tumors, each with different levels of severity. These tumors 
can be classified into subtypes based on specific biomarkers, which indicate 
median survival rates ranging from 1.5 years to over a decade. [8]. 

An important factor in treatment decisions is identifying an IDH gene mutation. 
According to the WHO 2021 classification, the presence or absence of IDH1 and 
IDH2 gene mutations distinguishes astrocytomas from glioblastomas, classifying 
them as IDH-mutant and IDH-wildtype, respectively. For diagnosing 
oligodendrogliomas, it is essential to identify combined whole arm deletions of 
parts of chromosomes 1 and 19 (1p/19q codeletion) along with an IDH mutation 
[7], [9].  

2.2 Nuclear medicine 
Nuclear medicine is a specialized field that uses radioactive materials, known as 
radiopharmaceuticals or tracers, to diagnose and treat various diseases and 
conditions. It combines the disciplines of molecular biology, medical imaging, and 
nuclear physics to provide unique insights into the metabolic processes of organs 
and tissues. The advantage of nuclear medical imaging over radiological imaging 
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is that not only anatomical structures are visualized, but also metabolic processes 
of the body [10].  

2.3 Tracer 
More than 100 years ago, the foundation for modern tracer techniques was laid by 
the pioneering work of George de Hevesy, a Hungarian radiochemist. In the early 
1920s, de Hevesy's experiments with radioactive isotopes marked a significant 
advancement in the field of chemistry and biology. Notably, in 1923, de Hevesy 
conducted a groundbreaking experiment involving the use of lead isotopes to study 
the absorption and transportation of lead in plant systems. He introduced a 
radioactive lead isotope into the nutrient solution of a plant and traced its 
movement throughout the plant's tissues. This experiment was seminal in 
illustrating the concept of using isotopes as tracers to follow the paths of 
substances in biological systems [11]. 

De Hevesy's work was not only instrumental in advancing the understanding of 
biological processes but also laid the groundwork for the tracer principle, a concept 
that revolutionized scientific research in many fields. The tracer principle involves 
introducing a small, detectable amount of a substance (the tracer), labeled with a 
radioactive isotope, into a system. By monitoring the tracer's behavior, scientists 
can derive valuable information about the dynamics of the system under study, 
such as metabolic pathways in organisms, the distribution of substances in the 
environment, or the functioning of complex industrial processes [11]. 

In the field of medicine, this principle led to the development of diagnostic 
techniques like Positron Emission Tomography (PET). PET scans use radiotracers 
to visualize and measure changes in metabolic processes, or physiological 
activities including blood flow, regional chemical composition, and absorption.  

For his pioneering work in using isotopes as tracers to study chemical processes, 
especially in plants, George de Hevesy was awarded the Nobel Prize in Chemistry 
in 1943. His work not only provided a powerful tool for scientific research but also 
opened up new horizons in various fields, including medicine, environmental 
science, and biochemistry, leading to a deeper understanding of complex 
biological and chemical systems [11]. 

Today, molecules in which individual atoms are replaced by radioactive isotopes 
are used as tracers. The ionizing radiation, which is emitted by isotopes during 
decay, is measured and thereby the molecules are traced through the body. 
However, not all isotopes are equally suitable for these measurements. In order to 
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understand the selection of suitable isotopes the basic concepts of radioactivity 
are explained in the following section [12], [13].  

Radioactivity is the act of emitting radiation spontaneously by an unstable atomic 
nucleus, which wants to give up energy in order to shift to a more stable 
configuration. A nucleus consists out of protons and neutrons. If there are too many 
neutrons in a nucleus it will emit a negative beta particle, which changes one of 
the neutrons into a proton. While if there are too many protons in a nucleus it will 
emit a positron changing a proton into a neutron [14], [15].  

In certain scenarios, when a nucleus possesses excess energy, it may release this 
surplus in the form of a gamma ray. Gamma rays are high-energy photons that 
allow the nucleus to discard energy without altering its particle composition [15]. 
This process is typically observed in nuclei that are in an “excited state”, a condition 
where their internal components, such as protons and neutrons, possess energy 
levels higher than their most stable configuration. The emission of a gamma ray 
brings the nucleus from this excited state back to its ground state, where it has the 
lowest possible energy level. 

In cases where a nucleus has an excess of mass, it may undergo alpha decay, 
emitting an alpha particle. An alpha particle is essentially a helium-4 nucleus, 
comprising two protons and two neutrons bound together. This emission occurs 
because protons, being positively charged, repel each other due to the 
electromagnetic force, one of the four fundamental forces in physics. The emission 
of the alpha particle, which is a relatively heavy entity compared to other forms of 
radioactive decay products, allows the original nucleus to reach a more stable, 
lower-energy state [14] [15].  

However, because protons and neutrons are so closely packed together in the 
nucleus, they are held together by the strongest force the “strong nuclear 
interaction” (one of the four elementary forces). This creates a stable equilibrium 
[15].  

Atomic nuclei, which have too many protons, too many neutrons or too much mass, 
are outside the equilibrium in an energetically too high and therefore unfavorable 
state. These nuclei can adopt an equilibrium state or at least approach it by 
releasing energy. There are several ways to do this, called different types of decay 
of an atomic nucleus, which release different types of radioactive radiation [14], 
[15].  
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α-radiation 

“Alpha radiation consists of alpha particles at high energy/speed. The production 
of alpha particles is termed alpha decay. Alpha particles consist of two protons and 
two neutrons bound together into a particle identical to a helium nucleus. Alpha 
particles are relatively large and carry a double positive charge. They are not very 
penetrating, and a piece of paper can stop them. They travel only a few centimeters 
but deposit all their energies along their short paths.” [17].  

β-radiation  

Beta radiation consists of free electrons or positrons. Depending on the charge 
Beta radiation is distinguished between ß+ and ß- radiation. ß- decay is the 
electron emission, a neutron is converted into a proton, electron and antineutrino. 
The electron and antineutrino fly away from the nucleus, which now has one more 
proton. Since a proton is gained during ß- decay the atom changes form one 
element to another. Whereas during ß+ decay, which is also called the positron 
emission, a proton is converted into a neutron, positron and neutrino in the nucleus. 
The positron and neutrino fly away from the nucleus, which now has one less 
proton and the atom changes from one element to another. Both types of radiation 
can be shielded with thin aluminum [15], [18] [17].  

γ-Radiation 

Gamma rays are weightless packets of energy called photons; they are pure 
energy. The energy is reflected in the wavelength and thus in the frequency. The 
shorter the wavelength and the higher the frequency, the higher the energy of 
electromagnetic radiation. Gamma rays are often emitted during radioactive decay 
of alpha or beta particles. Furthermore, gamma radiation is produced during 
nuclear fission and fusion. Complete shielding is not possible it can only be 
attenuated with lead or other materials with high mass number [15], [18].  

Ionizing radiation is not visible and cannot be registered by the human sense 
organs. The goal of dosimetry is to detect, measure and visualize radioactivity. The 
simplest measurement is the activity. It indicates the number of decay acts per 
second and its unit is 1 becquerel (1Bq) [15], [18].  

However, since the different types of radiation transport different amounts of 
energy, a second measurement is defined: the dose. It is supposed to express the 
total effect of radiation on matter. The absorbed energy (in joules (J)) of a defined 
quantity of matter (in kilograms (kg)) is measured in grays (Gy), where 1 Gy = 1J/kg 
[16], [18].  
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Furthermore, since the absorbed dose doesn´t indicate any biological effect on the 
human body, a third measurand has been defined: the dose equivalent. This 
multiplies the absorbed dose by a quality factor (for γ- and β-radiation this is 1, for 
α-radiation 10) and is measured in the unit Sievert (Sv) [15], [18].  

The radioactive decay of a single nucleus is unpredictable and spontaneous. 
Nevertheless, individual radioactive elements and isotopes differ in the average 
rate of radioactive decay. This can statistically be tangible with the half-life time of 
an isotope [14]–[16]. “The half-life of a radioactive isotope is the amount of time it 
takes for one-half of the radioactive isotope to decay”[19].  

For medical examinations special radioactive isotopes with neither a too long nor 
too short half-life time are used. Depending on the nuclear medical exam different 
isotopes are used, Positron Emission Tomography (PET) relies on ß+ emitters. 
[18].  

The important positron-emitting isotopes for PET-scans are carbon-11, oxygen- 
15, fluorine-18 (18F) and gallium-68. For brain imaging amino acid-based tracers 
are widely used because they are sparsely taken up by healthy brain tissue but 
very well taken up by most malignant lesions in the brain. [11C- methyl]-methionine 
(11C-MET) and 18F-FET are the most used tracer for brain imaging [18], [20]–[22].  

In the case of 18F-FET, the underlying amino acid has been deliberately modified 
so that it can be carried by the cell's competent transporter but is not incorporated 
into proteins [22].  

2.4 Positron emission tomography  
Positron Emission Tomography (PET) is an important imaging technique in nuclear 
medicine, designed for visualizing and quantifying biochemical and physiological 
processes using radioactive substances. During a PET scan, the individual is 
positioned within the scanner's field of view, after which the radiotracer is 
administered intravenously [16], [17].  

The radiotracer's instability triggers its decay, leading to the simultaneous release 
of a positron. The released positron travels a specified distance, known as the 
"positron range," as it moves through the surrounding tissue. Eventually, as it slows 
down, the positron interacts with an electron in its path, to form a positronium.  

Due to its inherently unstable nature, positronium undergoes self-annihilation, 
emitting two photons, each with an energy of 511 keV. These photons move in 
opposite directions. However, these annihilated photons are not perfectly collinear, 
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and this slight deviation can be attributed to the fundamental principle of 
conservation of momentum. This phenomenon happens because the positron, is 
not entirely at rest before it encounters the electron, leading to a minor 
misalignment in the emitted photons' trajectories. The fuoundation of PET imaging 
relies on the principle of coincidence detection, wherein these annihilated photons 
are detected [18].  

2.4.1 PET-imaging 

As established above PET imaging operates on the foundational principle of 
coincidence detection, as shown in Figure 1. The architecture of the PET system 
is characterized by a cylindrical configuration of detector rings. These rings 
produce timed pulses upon the detection of annihilated photons [18], [16].  

Conventional PET detectors utilize scintillation crystals such as Bismuth 
Germanium Oxide (BGO), Gadolinium Orthosilicate (GSO), and Lutetium 
Orthosilicate (LSO), which are seamlessly integrated with Photomultiplier Tubes 
(PMTs). When incident photons interact with these scintillating materials, they 
induce fluorescence. This fluorescence is subsequently transformed into electrical 
pulses by the PMTs. These derived pulses are then relayed to the coincidence 
circuitry. Photon pairs producing timed pulses within a predetermined temporal 
bracket (typically ranging from 6-12 ns) are deemed coincidental. Every 
coincidental event related to a photon pair is allocated a Line of Response (LOR) 
that seamlessly links the respective detector pair. This LOR provides the position 
of the annihilation, suggesting that the annihilation incident occurred somewhere 
along its trajectory [16].  

 

Figure 1: PET image formation. This image has been adapted from Sundar [19] 
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Figure 1 shows a simplified outline of the PET image creation process. The patient 
receives the radiotracer, which is then followed by data collection. Detector pairs 
identify the annihilation photons, and these are deemed coincidental if they are 
within a specific timing window. The gathered data is preserved either as a 
sinogram or in list-mode before it's reconstructed to produce the PET images.  

Coincidence occurrences are classified into three categories: true coincidences, 
random coincidences, and scattered coincidences. For the latter two categories, 
the provided positional data of the annihilation event is incorrect due to the 
misalignment in the LOR. The primary factor for this discrepancy arises from the 
interactions of the annihilated photons with the surrounding biological tissues [16].  

PET data can be classified into two main categories: sinograms and list-mode data, 
visualizing multiple LORs emerging from one single point within a subject.  

If these LORs are graphically represented based on their orientation (y-axis) and 
their minimal displacement from the gantry center (x-axis), the resulting diagram 
would show a sinusoidal pattern. By doing this process for every point within a 
single plane of the subject, one can generate a sinogram. These derived 
sinograms are then processed further to yield three-dimensional PET 
visualizations [16].  

In the context of list-mode data acquisition, every identified coincidence event is 
stored in a structured format. This format carries a range of specific information: 
the event type, the exact coordinates of the detector pair, the energy of the 
captured photon pair, along with temporal data etc. It's essential to note that list-
mode data offers enhanced spatio-temporal fidelity [16], [20].  

After acquiring the coincidence events, specialized reconstruction algorithms are 
used to create an image showing the radiotracer's spatial distribution within the 
scanned subject. These image reconstruction methods are divided into two types: 
analytical and iterative [16] . 

Filtered back-projection (FBP) is a common analytical technique. It reconstructs 
the tracer distribution by performing an inverse Radon transformation on the 
projection data. To improve the image quality, a high-pass filter is integrated to 
elevate the visual quality of the reconstructed image. However, the filtration 
process can increase the noise in the images [21].  

The iterative approach offers a more detailed representation of the system. 
Typically, these methods involve repeating a series of steps until specific 
convergence criteria are reached [21]. First, the raw dataset is created from an 
initial image based on the PET system´s model. This generated data is then 
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compared with actual data obtained from the system. The result of this comparison 
produces calibration factors which are vital for fine-tuning the raw dataset. Among 
iterative techniques, the Maximum Likelihood Expectation Maximization (MLEM) 
[22] and its advanced version, the Ordered-Subsets Expectation Maximization 
(OSEM) algorithm [23], are the most well-known methods. MLEM's aims to create 
an accurate image by iteratively comparing the correlation between estimated and 
actual acquired projections. Due to its structure, which requires multiple iterations 
to reach an optimal solution, MLEM can be time- consuming. In contrast, OSEM, 
an accelerated version of MLEM, optimizes this process. It groups angular 
projections into specific subsets, applying the MLEM methodology to the entire 
subset instead of each projection. This streamlined approach not only reduces 
computational time but also OSEM's has similar quantitative accuracy to FBP [21], 
[24].  

2.4.2 Data correction 

The data obtained from PET imaging is influenced by various factors that 
compromise both its qualitative and quantitative information. Influences such as 
discrepancies in detector efficiencies across detector pairs, photon attenuation, 
and the incidence of random and scatter coincidences affect the acquired data. An 
assessment and adjustment for each of these factors is important prior to the data 
reconstruction. A detailed overview of these components and their associated 
corrective measures is provided in the following chapter.  

2.4.3 Normalization 

Within the context of normalization, it's crucial to understand that PET systems are 
composed of many detectors grouped into blocks. These blocks are then 
connected to a multitude of photomultiplier tubes (PMTs). Variations in efficiency 
among detector pairs arise from multiple sources, including the detector's 
placement within its block, physical characteristics of the detectors, and the gain 
adjustments of the related PMTs. Such variations lead to data non-uniformities. To 
address these inconsistencies, a normalization process is executed [25]. This is 
performed by exposing all detector pairs to a 511 keV photon source, such as a 
68Ge source, which is strategically positioned within the field-of-view. The 
collected data is used to determine normalization factors for each detector pair. 
This determination is based on the ratio of the overall average count from all pairs 
(LORs) to the count from an individual detector pair. These calculated 
normalization factors are then applied to the corresponding data sets in the 
patient's sinogram [16].  
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2.4.4 Attenuation Correction 

As photons resulting from annihilation events pass through the tissue of a subject, 
they are attenuated. The extent of this attenuation is depending on factors such as 
the tissues thickness and tissue components. This leads to an observable 
decrease in the detected photons across each LOR. To preserve the quantitative 
accuracy of PET images, it important to account for these attenuation effects [26]. 
In traditional standalone PET systems, the calculation of attenuation coefficients 
for each LOR is done by a rotating transmission source [27]. The process involves 
performing two scans using the rotating source: an unobstructed blank scan and a 
transmission scan with the subject positioned within the field of view. By dividing 
the blank scan with the transmission scan the attenuation coefficients are 
calculated, which are then used to adjust each specific LOR for attenuation effects.  

In state-of-the-art PET/CT configurations, the CT transmission image is 
seamlessly converted into an attenuation profile via tube-voltage-dependent 
bilinear transformation processes [28], [29]. Creating an attenuation profile directly 
from MR images, in fully integrated PET/MRI scanners, presents a unique 
challenge. This complexity arises from the lack of a straightforward connection 
between MRI signals and the attenuation characteristics of tissue. However, 
innovative methodologies [30] have been created and verified, with a special focus 
on cerebral studies [31].  

2.4.5 Scatter Correction 

The photons resulting from annihilation events may be exposed to Compton 
scattering on their way through the subject´s tissue. An important point is that the 
detectors themselves could induce scattering which would lead to a change in the 
trajectory of these photons [32].  

As a result, the LOR for scattered photons may not accurately represent the 
genuine location of the annihilation event (refer to Figure 2). The scattering 
phenomenon significantly influences the ultimate image quality, affecting not only 
quantitative parameters but also qualitative characteristics. This is particularly 
noticeable as it reduces the contrast in the resulting reconstructed images. Among 
the various techniques used for scatter correction in both PET-CT and PET-MR 
systems, the Single Scatter Simulation (SSS) method takes a prominent position 
[33], [34].  

This algorithm is based on the assumption that only one of the two annihilation 
photons is undergoes to Compton scattering. By using an estimated activity 
distribution, the medium's attenuation properties, the physical model of Compton 
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scattering, and the SSS method estimates the scatter distribution. The scatter 
sinogram derived from the SSS model is then subtracted from the originally 
measured sinogram prior to the process of image reconstruction [33].  

2.4.6 Random Event Correction 

Random events occure when two unrelated 511 keV photons (originating from 
different annihilation processes) are simultaneously detected by a pair of detectors 
within the intended coincidence time frame (as in Figure 2). Such events lead to 
an inaccurate LOR, which does not accurately reflect the actual position of the 
annihilation event. These random events have a negative effect on the quality of 
the reconstructed images, most notably reducing image contrast. To counteract 
and correct these random events, a dual coincidence circuitry system was 
implemented: the primary mechanism works within the conventional time frame, 
while a secondary system operates within an extended time window. Both systems 
maintain the same energy window parameters. The primary mechanism records a 
mix of random and true events, while the extended system records only the random 
events [16]. During the correction process, the counts from the extended window 
are subtracted from the conventional window's counts, resulting in a refined count 
of true coincidence events [16], [25].  

Figure 2 shows true, scatter and random events. A 'true event' captures two 
photons from the same annihilation point without any scatter or attenuation 
interference. For 'scattered events', at least one of the photons deviates from its 
initial path due to scattering. A 'random event' involves detecting two photons from 
separate positron annihilations that occur within the coincidence timing window 
[19]. 

 
Figure 2: Types of coincidences [34] 
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2.5 Partial Volume effect 
The partial volume effect (PVE) occurs due to the limited spatial resolution of the 
PET systems. This effect has quantitative and qualitative impacts on PET images 
especially when examining the IDIF of the brain. One of the reasons is that the 
diameter of arteries is close in size to the full-width-half maximum of the PET 
scanner. Essentially, PVE arises primarily because of two different reasons: [26], 
[35]  

Ø Limited spatial resolution 
Ø Discrete image sampling of a continuous 3D activity distribution 

The Partial Volume Effect is responsible for the spreading of radiotracer activity, 
causing it to spread not only within the primary region of interest but also into the 
neighboring anatomical structures, and vice versa. This effect results in a blurring 
or smearing of the observed activity distribution. Such smearing can lead to 
significant discrepancies in the PET quantification, potentially resulting in either 
underestimations or overestimations of true radiotracer concentration. To address 
these discrepancies, various partial volume correction (PVC) methods have been 
proposed. These methods primarily utilize anatomical insights derived from co-
registered CT or MR imaging to improve the accuracy of PET imaging results [36]-
[37]. 

PVC techniques can be separated into two primary classifications post- 
reconstruction and reconstruction-base PVC methods. Prominent post- 
reconstruction PVC techniques are:  

Ø Recovery Coefficient Correction 
Ø Müller-Gärtner methodology  
Ø Geometric Transfer Matrix  

These techniques require an in-depth understanding of the system's structural 
parameters and its point-spread function for effective PVC execution. Typically, the 
point-spread function is conceptualized as a spatially-consistent isotropic 3D 
Gaussian function, the full-width-half-maximum (FWHM) which mirrors the 
system's spatial resolution [38]. Reconstruction-based methodologies improve 
spatial resolution by encapsulating partial volume influences via system-response 
modeling [39]. 
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2.5.1 Spill in and out correction  

Central to addressing the Partial Volume Effect in PET imaging is the correction 
for spill-in and spill-out effects, which are direct consequences of PVE. 

Spill-in happens when radioactivity from outside a particular region of interest (ROI) 
enters into that ROI due to the PET system's limited spatial resolution. To illustrate, 
if an area with high radioactivity is adjacent to one with lower activity, the increased 
activity can seem to "leak" into the less active zone, resulting in overestimated 
activity levels for the latter [40], [41]. 

Conversely, spill-out describes situations where the radioactivity within an ROI 
appears to extend beyond its boundaries, again due to the system's limited spatial 
resolution. This means that some activity from the ROI appears to spill-out into 
nearby tissue areas, causing an underestimation of the actual activity within the 
ROI [40], [41].  

For accurate quantification of PET-data it is crucial to address these phenomena. 
Correction for spill-in and spill-out are designed to reflect the true trace uptake 
more accurately in the ROI by adjusting the measured activity concentrations [41].  

In the paper of Sundar’s et al. “Towards quantitative [18F]FDG-PET/MRI of the 
brain: Automated MR-driven calculation of an image-derived input function for the 
non-invasive determination of cerebral glucose metabolic rates.” The authors 
developed an enhanced spillover correction to achieve a quantitative IDIF [42].  

The primary steps in their correction process involved addressing the background 
activity in the target region (known as spill-in) and subsequently correcting the loss 
of actual activity within the designated area (spill-out). Effective implementation of 
these corrections requires an understanding of both the system's point spread 
function (PSF) and the distribution of background activity [42].  

In their study the PSF was determined using a 1-mL syringe filled with [18F]FDG, 
placed similarly to the presumed internal carotid artery (ICA) position. After 
processing and comparing data, the full width at half maximum (FWHM) of the PSF 
for the system was determined to be (6.0 ± 0.4) mm [42].  

For an accurate assessment of background activity, they defined a spill-out zone 
based on the derived PSF. An initial background zone was determined to be 10mm 
away from this area’s edges. Recognizing variations in background activity, the 
region was divided into 20 segments. Through a series of computations, 
adjustments were made to ensure uniformity of the tracer concentration and to 
account for radial differences. The final ICA value accounted for these 
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irregularities. This iterative process was applied to all PET frames, resulting in a 
corrected image-derived input function [42].  

Accurate quantification of PET data is crucial for both diagnosis and therapy 
evaluation. 18F-FET PET/MRI scans are acquired dynamically to capture the 
kinetics of the trace uptake over time. The IDIF provides essential data for 
modeling the dynamic of the radioactive tracer in the brain. Unfortunately, the IDIF 
is compromised by spill-in and spill-out effects [43].  

2.5.1 Image derived input function 

The tracer concentration in the blood is referred to as "input function." It's an 
external component in the pharmacokinetic modeling, which is predetermined and 
remains unaffected when resolving differential equations [36]. This function 
describes the temporal variation in blood activity during an examination. To 
determine this concentration, continuous invasive measurements are required 
during the examination. While it's assumed the activity in the blood is 
homogeneously distributed, discrepancies can arise shortly after the tracer's 
application. Due to its invasive nature and the potential risks, this method is not 
commonly used [36].  

Multiple methodologies to determine an input function have been developed as 
alternatives. A more practical and well-researched method is to derive the input 
function from the dynamic PET scan itself. This means assessing the activity in 
major blood vessels, then using this activity's temporal trajectory as the input 
function. However, inaccurately pinpointing the location of these vessels can lead 
to errors. In the beginning stages of the scan more accurate values are obtained 
when vessels are used to create the input function, especially those that supply 
the area being examined [36], [42].  

2.6 Motion correction  
During PET/MRI neuroimaging sessions, managing both involuntary and voluntary 
motion is crucial. Involuntary movements, such as breathing and heartbeat, occur 
naturally and are beyond the patient's control. While, voluntary movements arise 
from discomfort or a need for the patient to adjust their position. These movements 
can create motion artifacts, distortion of images and decrease the accuracy of 
PET's quantitative analysis [44].  

Several solutions have emerged to counteract these motion artifacts. Hardware 
strategies, for instance, involve placing optical markers on the patient's head to 
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track motion throughout the scan. Data-centric techniques divide the scan into 
short time segments, realigning them to correct any motion-related distortions. The 
integration of PET and MRI technology further introduces MR-assisted methods, 
which can be hardware, image, or navigator-based [44], [45], [46].  

Sundar et al. developed with his research group the “Fast Algorithm for Motion 
Correction” (FALCON) software. It offers a solution to correct both fixed and flexible 
motion distortions in dynamic whole-body (WB) images, regardless of the PET-CT 
system or tracer used. This correction is achieved through an initial affine 
alignment, followed by a diffeomorphic method to address flexible deformations, 
with images aligned at multiple scales. The software auto-determines suitable 
frames for efficient motion correction using an initial normalized cross-correlation 
metric. Testing across three PET-CT systems using six different tracers showed a 
significant reduction in motion-related errors. Notably, body motion artifacts were 
reduced by 50%, liver motion was entirely corrected in roughly 70% of cases, and 
tumor clarity was enhanced, increasing average tumor SUVs by 15%. Moreover, 
large deformations in specific cardiac images were addressed without creating 
further image distortions. The consistency in concentration levels of activity was 
maintained in large organs, with less than a 2% change pre and post-correction.  

In summary, FALCON provides a quick and precise solution to correct motion- 
related issues in medical images, making it versatile for various PET imaging 
contexts [46].  

Miranda et al. [47] focused in a study on improving rigid motion correction in PET 
imaging by enhancing the accuracy of motion tracking data. The researchers 
developed a method to correct marker displacement over the skull and small 
residual translation tracking errors. Using [18F]FDG and [18F]SynVesT-1 scans in 
awake mice and rats, they demonstrated that these corrections significantly 
improved image contrast and quality. The improvements were measured by the 
Image Enhancement Metric (IEM), showing notable increases in image contrast 
after applying the corrections, indicating better motion-corrected reconstructions 
[47].  

2.7  Magnet resonance imaging  
Magnetic resonance imaging is an imaging technique that produces cross- 
sectional images of the human body in different planes (coronal, sagittal and axial). 
It's crucial to emphasize that MRI operates without ionizing radiation. Instead, it 
relies on the manipulation of magnetic fields and the application of high-frequency 
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pulses to stimulate hydrogen atoms (H) within the body. Additionally, the 
remarkable soft tissue contrast offered by MRI sets it apart as a valuable imaging 
modality when compared to other techniques [48].  

The magnetic field of an MRI scanner is always upright because the 
superconducting electromagnet conducts the electric current without resistance, it 
remains endless in the coil (made of niobium and titanium (NbTi)). The 
superconductivity of a magnet results from the fact that current is induced once 
and the system is cooled by liquid helium to -269°C (near absolute zero 
temperature). At this temperature, the coil loses its electrical resistance and 
conducts the current endlessly [48].  

Hydrogen atoms are stimulated by magnetic fields and high-frequency pulses. An 
important property of the H is the intrinsic angular momentum about its own axis, 
the so-called nuclear spin. Under normal circumstances, the orientation of the H is 
in any direction. When the hydrogen atoms are introduced into a magnetic field, 
two special features occur, precession and longitudinal magnetization. In 
precession, the H gyrate (at the Larmor frequency), in addition to the nuclear spin, 
along the magnetic field axis. Longitudinal magnetization causes the hydrogen 
atoms to align in the magnetic field direction. Some of the H align parallel and some 
antiparallel to the field, the stronger the magnetic field the more H align parallel. 
The small excess of parallel aligned hydrogen atoms is called net magnetization 
and is the basis for the MRI images [49].  

To explain the physical processes involved in MRI imaging more clearly, the axes 
are described using a coordinate system. 

• z-axis = main magnetic field direction B0, longitudinal magnetization Mz 
(patient position) 

• x-axis = horizontal axis, transverse magnetization Mxy 
• y-axis = vertical axis, transverse magnetization Mxy 
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Figure 3: MRI cross section and longitudinal section showing the axes 

To obtain the required signal for MRI, the hydrogen atoms must be shifted to a 
higher energy. Through high-frequency pulses (HF) energy is supplied to the H as 
long as the pulse is transmitted. The HF must have the same Larmor frequency 
with which the hydrogen atoms precise along the magnetic field axis. This leads to 
the phenomenon "resonance." Due to the HF, the H are transferred from the 
longitudinal magnetization (Mz) to the transverse magnetization (Mxy) and are 
synchronized. When the hydrogen atoms are synchronized, all H are forced to the 
same position in the gyroscopic motion. During the duration of the high- frequency 
pulse, there is a decay of the longitudinal magnetization with a simultaneous 
buildup of the transverse magnetization and phase alignment of the hydrogen 
atoms. When the radio frequency pulse is switched off, the energy release, during 
the relaxation of the hydrogen atoms, produces the MRI signal. While the 
relaxation phase is in progress, longitudinal magnetization is restored (T1 
relaxation) and dephasing of the H occurs (T2 relaxation). The signal depends on 
the magnetic field, proton density, T1 relaxation time and T2 relaxation time. The 
proton density, T1 and T2 relaxation depend on the tissue and from this the 
different contrasts for MRI imaging can be generated [49], [2].  

In order to generate an image from the resulting MRI signal, the position of the H 
in the spatial planes z, x and y must be encoded, the so-called spatial encoding. 
For this, the gradient coils located around the main magnet are needed.  

Layer position and thickness are encoded via the layer selection gradient and the 
other two spatial planes are determined by the phase and Frequency encoding 
gradients. The layer coding is done by selecting the plane and cannot be swapped, 
phase and frequency coding direction can be swapped with each other [2].  

If current is applied to the gradient coils another magnetic field is induced (B1 = 
gradient field). This B1 is superimposed on the B0 and can be changed in a 
targeted manner. At one end of the gradient the main magnetic field is 
strengthened and at the other end it is weakened. The Larmor frequency of the H 
is also changed, so only the H defined by a certain frequency interval are 
stimulated. By switching on all three gradients in coordinated manner, an exact 
location definition of the hydrogen atoms is possible [2].  

Figure 4 shows B1 and how a layer is selected. By means of the frequency intervals 
and the triangle it is shown that the B0 is amplified on the right and weakened on 
the left by the B1.  
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Figure 4: MRI layer selection 

Since the development of the MRI, a variety of different so-called sequences have 
been established, which use different parameters of the resulting signal to 
generate an image.  

2.7.1 MRI – image contrast 

The weighting (image contrast) of MRI images is determined by T1W (T1-
weighted), T2W (T2-weighted), and PDW (Proton Density weighted). Key 
parameters influencing the weighting are the repetition time (TR = Time of 
Repetition) and echo time (TE = Time to Echo). Depending on the relaxation stage 
at which the signal is read, the result is either a T1W, T2W, or PDW image [2]. 

For T1W-weighted images, tissues with a short T1 time appear hyperintense 
(bright), whereas tissues with a long T1 time appear hypointense (dark). The T1 
time indicates the duration required for hydrogen atoms, post-excitation, to return 
to longitudinal magnetization. The TR influences the T1 time because it determines 
how long the hydrogen atoms have to return to their original position. Tissues, such 
as fat, relax quickly and, upon a new excitation, emit a robust signal, appearing 
hyperintense. While, tissues like cerebrospinal fluid, with a long T1 time, have not 
relaxed during a short TR, emit a minimal signal, and appear hypointense on MRI 
images [2], [50].  

In T2W-weighted images, tissues with a short T2 time appear hypointense, while 
those with a long T2 time appear hyperintense. The echo readout occurs later than 
in T1W images, which means tissues, such as cerebrospinal fluid with an extended 
T2 time, still have a substantial signal and appear hyperintense [2], [50].  

In Proton Density-weighted images, tissues rich in hydrogen atoms are 
represented as hyperintense, while those with fewer hydrogen atoms appear 
hypointense. Only those hydrogen atoms that are in the excited state at the time 
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of measurement are intended to emit a signal. A short TE and extended TR 
minimize T1W and T2W influences. PDW-weighted images present a gray-white 
overall impression, with liquids and fats appearing nearly isointense [2], [50]. 

2.8 Combination of PET and MRI 
PET/MRI-scanners are a hybrid imaging technology which combines soft tissue 
morphological imaging and functional imaging. This integration offers significant 
advantages in clinical and research settings, allowing simultaneous, multi- 
parametric imaging [51], [52].  

The concept of integrating stand-alone PET with MRI first emerged in the 1990s 
[63]. By 1996, the introduction of MR-compatible PET detectors made it feasible to 
conduct PET assessments within strong magnetic fields. This advancement paved 
the way for preclinical hybrid PET-MR systems, which were designed to facilitate 
simultaneous PET and MRI scans. Transitioning PET/MRI systems from preclinical 
to clinical applications posed significant challenges, primarily due to the technical 
issues involved in merging standalone clinical PET and MRI systems [51], [53]. 
The development of the clinical PET/MRI system was undeniably influenced by the 
success of PET-CT. An integrated PET/MRI system offers distinct advantages over 
PET-CT, particularly in the domain of neuroimaging.  

Beyond its superior soft-tissue contrast, MRI offers a diverse range of pulse 
sequences, enabling non-invasive brain exploration. Given that an integrated PET- 
MRI system delivers spatially co-registered PET and MR datasets, the structural 
insights derived from MRI can enhance both the quantitative and qualitative 
aspects of the PET data. From a research perspective, comprehensive PET-MR 
protocols, which include PET assessments paired with simultaneous MRI 
techniques such as T1-MRI, blood oxygenation level dependent-functional MRI 
(BOLD-fMRI), diffusion weighted (DWI), dynamic contrast enhanced (DCE), and 
spectroscopy, can be used to understand the body's dynamic processes [51], [52], 
[2].  

2.8.1 Technical challenges of hybrid PET/MRI 

The integration of PET and MR systems demanded a series of innovative technical 
advancements, because of compatibility concerns between the two platforms [51]. 
The interferences between PET and MRI components, in particular, the strong 
static magnetic field and the rapidly changing gradients of the MRI disrupted the 
regular operation of the Photomultiplier Tubes (PMTs) and associated PET 
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circuitry. The homogeneous magnetic field deviated electron pathways, causing a 
loss in signal gain. Meanwhile, the gradient fields introduced Eddy currents in the 
PET systems, leading to heat generation and mechanical vibrations. Additionally, 
Radio Frequency interference from MRI's transmission coil profoundly affected the 
PET electronics, thereby altering the PET count-rate [51]. On the other hand, PET 
electronics could introduce inconsistencies in the MRI's primary magnetic field, B0. 
Given the high sensitivity of MRI receiver coils, designed to pick up delicate 
Magnetic Resonance signals, interference from similar frequencies, for instance, 
120 MHz at 3T, compromised the clarity of MRI outputs [53].  

Each individual system typically had an inner bore diameter between 60-80 cm. In 
order to achieve integration, resizing in one of these systems was unavoidable. By 
reducing the thickness of the PET detectors, they were seamlessly integrated into 
the MRI's bore, preserving the necessary Field of View for whole- body imaging.  

In response to these challenges, Philips Healthcare introduced the first market- 
ready PET/MRI system, named the Ingenuity TF [54]. This innovative solution 
combined a conventional 3T whole-body MRI system with a modified Time-of- 
Flight (TOF) PET system, separated by a moveable bed mechanism. This spatial 
avoided interferences between the systems, while traditional PMTs remained 
shielded. Although, this configuration, enabled spatially synchronized PET and 
MRI images, they could not ne acquired simultaneously.  

One of the main obstacles on the way to a holistic PET/MRI integration was the 
usage of PMTs. As a solution, solid-state photo detectors (SSPDs) were developed 
to efficiently identify photon pairs even within strong magnetic fields [55], [51]. The 
most prominent SSPDs for PET/MRI applications were Avalanche Photodiodes 
(APD) [66] and Silicon Photomultipliers (SiPM) [56]. Within SSPDs, incident 
photons genarated electron-hole pairs that are promptly captured by the inherent 
electric field of the device. Since the path traveled by the charge is minimal, they 
remain resistant to the powerful magnetic fields produced by the MRI. Siemens set 
a significant milestone with the release of the integrated PET/MRI system, the 
Biograph mMR, by transitioning from PMTs to APDs, thus enabling simultaneous 
PET and MRI data acquisition [57]. The detector unit of this system is located 
between the gradient and body coils of a 3T whole-body MRI and consits of eight 
rings, each with 56 detector blocks, where each block contains 8 x 8 LSO crystals 
connected to a 3 x 3 APD array.  

Following the introduction of Siemens' Biograph mMR, GE Healthcare showcased 
their solution, the SIGNA PET-MR [58]. This version also featured a PET detector 
ring within a 3T MRI system, leading to a 60 cm internal bore diameter and a 25 
cm axial FOV. GE opted for lutetium-based scintillators in tandem with SiPMs for 
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their PET detectors. By leveraging these detectors, GE incorporated Time-of-Flight 
PET technology into the SIGNA PET-MR, marking it as the exclusive TOF PET- 
MRI system with a coincidence timing resolution below 400ps [59], [28].  

2.8.2 Attenuation correction in PET/MRI  

The accuracy of PET images is notably influenced by factors such as attenuation 
and scatter. In PET-CT, the extraction of PET attenuation components was 
traditionally achieved by converting the Hounsfield units extracted from the 
corresponding CT image using a specific bilinear scaling that is sensitive to tube- 
voltage[28], [29]. However, for systems like the PET/MRI, a challenge emerges. 
The attenuation components must be derived directly from MR images. This is 
complex because MR data predominantly showcases the proton density and T1, 
T2 relaxation attributes of tissues, not the electron densities that determine 
attenuation. Given this, there has been a common effort to extract accurate 
attenuation maps from MR images. The precision of the final reconstructed PET 
image leans heavily on the correctness of this attenuation map [30].  

Various methodologies have been introduced for MRI-based attenuation 
correction, especially when examining the brain. These can be categorized into the 
following four groups:  

Ø Atlas-based Approaches: 
These methods involve aligning a subject's MR image (such as T1, T2, or 
UTE) to a reference database containing paired MRI-CT or MRI- 
transmission (TX) AC maps. The procedure typically follows two phases: 
the atlas MR in the pre-established space is mapped onto the subject’s 
native MR image through affine co-registration techniques. Subsequently, 
this transformation is extended to the atlas CT-TX image, generating a 
specific CT-TX image for the subject. However, because these strategies 
heavily rely on templates from subjects with normal anatomy, their 
effectiveness diminishes with subjects that display abnormal anatomical 
morphology [60], [61].  
 

Ø Segmentation-based Strategies:  
These techniques derive attenuation maps directly from MR images, 
offering stability even when faced with anomalous subject anatomy. The 
principal of segmentation-based strategies is to segment the MR image into 
distinctive tissue classifications, for instance, soft tissue, air, and bone, and 
then assign corresponding attenuation coefficients to each tissue 
classification. While MR images from specific sequences, like UTE or ZTE, 



2 Fundamentals  

25 

are effective in capturing bone data, others like Dixon sequences might not 
sufficiently highlight bone, leading to potential biases [62]. Furthermore, 
some challenges arise in delineating bone accurately, as these sequences 
sometimes either overestimate or underestimate bone presence in the skull 
and neck region. One limitation of this method is its reliance on a fixed 
attenuation value for specific tissue types, overlooking the potential 
variations in a tissue's attenuation characteristics, such as with bone[30], 
[62]. To address this constraint of having discrete attenuation values, a 
range of strategies that yield continuous attenuation values for bone have 
been proposed [63], [64]. These approaches leverage sophisticated 
segmentation techniques and use a derived model between R2* values 
from UTE images and HU values from CT images to determine bone 
attenuation values generated to individual patients. As anticipated, 
attenuation maps with continuous values were superior over those with 
discrete values [64]. Additionally, these segmentation-oriented MRI AC 
techniques are not only more user-friendly but are particularly apt for 
clinical scenarios, especially when patients with irregular cranial shapes 
due to medical interventions or illnesses are scanned [65], [66], [67].  

 
Ø Machine-learning-based Techniques:  

With the emergence of advanced deep learning algorithms, studies have 
demonstrated the possibility to produce pseudo CT images from MR 
images. This procedure generally involves two primary phases: first, the 
creation of an MR-CT database, and second, a training period focused on 
the relationship between MR intensity and the corresponding CT 
Hounsfield unit values. The MR-CT database consists of spatially aligned 
datasets from various subjects, eliminating the need to align an individual's 
MR image with the MR-CT database to derive the CT attenuation 
coefficients. Deep learning methodologies offer an advantage in their 
robustness, particularly when processing complex signals with noise [68], 
[69].  
 

Ø Reconstruction-based Techniques: 
Reconstruction-based methodologies extract attenuation correction factors 
utilizing emission data or by combining emission data with transmission 
data or using data from scatter coincidences. Initial methods relied on 
leveraging the consistency conditions inherent to the Radon transform. 
However, these techniques never became standard in clinical practices. 
More recent efforts, such as those employing the MLEM algorithm [70], 
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have shown promise, especially when they incorporate Time-of-Flight 
(TOF) data to refine the outcomes [71]. The maximum-likelihood 
expectation maximization (MLAA) algorithm, which was proposed by Nuyts 
et al., could derive an attenuation sinogram using only emission data [70]. 
The process required accurate count statistics and was limited by the 
cross-talk artifacts due to interferences between emission and attenuation 
data. Introducing Time-Of-Flight (TOF) data and implementing spatial 
constraints (from sources like MRI) reduced the cross-talk artifacts 
significantly [71]. Moreover, combining transmission scans with emission 
scans offers another promising approach for producing an attenuation- 
corrected PET image. This concept, initiated by Clinthorne et al., aimed to 
distinctly separate transmission from emission data. Contemporary studies 
suggest that employing TOF information can successfully achieve 
separation of emission and transmission data [72].  

Commercial PET-MR systems on the market typically offer solutions aligned with 
either atlas-based or segmentation-based methodologies.  

Specifically: 

Ø Siemens Biograph mMR presents three distinct MRI-AC types:  
o two-point Dixon AC that does not consider bone distribution [73], 

[74] 
o UTE-based AC that does in corporate bone distribution [74] 
o atlas-based AC that supplements the Dixon AC map with bone data 

using a singular atlas [75] 
Ø GE Signa PET-MR provides two variations of MRI-AC:  

o atlas-based methodology 
o ZTE-based methodology [62] 

In a comparative study, Ladefoged et al. [30] analyzed 11 distinct MRI-AC 
techniques, excluding those based on deep learning, to assess their accuracy 
in brain MRI-AC applications. The findings revealed that the performance of all 
11 MRI-AC methods remained within the generally accepted bounds, deviating 
by no more than ± 5% from CT-AC benchmarks. It's worth noting that the 
precision of MRI-AC concerning image-derived input functions and the 
standard database remains under-explored. However, a later publication 
resulting from this research explores deeper, evaluating a modern MRI-AC in 
the context of IDIF and a normative database [30].  
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2.9 Dynamic 18F-FET-PET examination in 
glioma 

As the prognosis of different types of gliomas and their severity varies patients 
benefit from an early and reliable diagnosis. Histological examinations are 
associated with surgical intervention and are correspondingly risky. Therefore, the 
dynamic 18F-FET-PET has been established as an important diagnostic tool in the 
management of gliomas.  

In order to study metabolic processes of the body it is helpful to analyze static 
information such as the result of an accumulation of a substance and dynamic 
information such as the transport of a tracer through the body.  

The current guidelines advocate the analysis of the tumor's time-activity curve 
(TAC) relative to healthy brain tissue. This involves graphically representing the 
curve progression and making a visual assessment. Multiple studies have shown 
that a TAC exhibiting a plateau formation or a rapid decline following an initial 
increase indicates a more aggressive tumor [76], [77]. 

Building on this, numerous studies have aimed to enhance the prognostic 
accuracy. For instance, researchers have correlated the TAC shape with glioma 
progression time [88], various glioma mutations [8], [78] and particularly aggressive 
regions within the tumor. Other studies have delved into questions concerning 
therapy success, recurrences [79], [77], and differentiation from metastases [80]. 
Most of these issues were further studied using static 18F-FET- PET examinations 
[5], [77], [79].  

Several new analytical approaches have also been published. Under the umbrella 
term "radiomics," some studies have conducted textural analyses of gliomas [81], 
[93] established links to specific MRI sequences [82], [83], and employed artificial 
intelligence algorithms [84], [85].  

Pharmacokinetic modeling for 18F-FET-PET has also been explored in some 
studies, primarily focusing on determining the optimal model for the entire tumor. 
Publications by Bolcaen et al. 2016 [86] and Richard et al. 2017 [87] investigated 
pharmacokinetic modeling of 18F-FET based on glioma formations in rats. In both 
studies, two-compartment models emerged as the most effective. Koopman et al.'s 
2018 study, involving seven participants, identified the 2T4k model as the ideal 
one for the tumor, with a reversible model predominant in healthy brain tissue. This 
study used a directly measured arterial input function [88].  
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Röhrich et al., in 2018, published a study with 44 participants where 
pharmacokinetic modeling aided in distinguishing between WHO Grade 4 and 
Grades 2/3. A 2T4k model was employed, and the input function was sourced from 
PET scans near the carotid arteries. Significant differences were observed in the 
relative k1 values between glioblastomas and low-grade gliomas [8].  

Apart from the initially introduced TAC analysis, no other analysis method has 
made its way into clinical practice recommendations. This can be attributed to 
consistently weak diagnostic accuracy or small study sizes, despite the presence 
of significant results as present in the studies above.  

The full potential of kinetic modeling has yet to be achieved. Embarking on such 
studies presents considerable challenges. Not only is it difficult to obtain dynamic 
raw data, but the necessity of high-cost analytical software presents another 
difficult obstacle.  

Research is evolving towards a streamlined and universally applicable 
implementation. The system should work independently and pave the way for 
machine-based analyses. By employing kinetic modeling for each individual voxel, 
a more precise representation of inconsistencies both within and surrounding a 
glioma can be achieved. This advancement marks a significant step towards non-
invasive diagnostics.  

In Poglitsch's dissertation titled, “Kinetische Modellierung bei dynamischen 18F- 
FET-PET Untersuchungen von Gliomen” the main goal was to design a program 
that allows for the automatic kinetic modeling of an 18F-FET-PET examination of 
the brain. In the pilot study a software was developed to enable clinicians and 
researchers to perform streamlined pharmacokinetic modeling. The program 
generates parametric maps detailing pharmacokinetic variables vB, k1, k2, k3, and 
k4, an 18F-FET-PET/MRI analysis. Subsequent maps can pinpoint inequalities 
between gliomas and normal brain tissue [7].  

Validated with a sample of eight patients, the produced parametric maps were set 
against gliomas' histologic diagnosis and conventional 18F-FET-PET/MRI 
evaluations. As a result, the optimal pharmacokinetic model was determined as 
the two-tissue reversible plasma (2T4k) model. It is important to note that, while 
significant variances between gliomas and healthy brain tissue were evident with 
this model, the study's limited sample size made differentiation based on 
histological diagnosis inconclusive [7].  
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The pilot study underscores the potential of pharmacokinetic modeling in 18F-FET- 
PET/MRI glioma imaging and offers an accessible software tool for future 
researchers.  
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2.10 Hypothesis of the thesis  
The main goal of this thesis is to integrate a state-of-the-art partial volume 
correction technique to advance quantitative accuracy in kinetic modeling, 
specifically for image-derived input-function (IDIF) extraction. Hence, the time- 
sensitive activity concentration in the tissue adjacent to the carotid arteries will be 
evaluated, leading to the development of a respective spill-in and -out correction 
that is both time and tissue dependent. The result of this thesis is a quantitative 
accurate IDIF for kinetic modeling.  

In addition to the main goal, this thesis will implement a robust motion correction 
and thereby tackle the challenges posed by patient motion during a 40-minute PET 
scan. The objective is to reduce the impact of patient motion in between the frames 
of the acquired PET data, ensuring that the data used in kinetic modeling remains 
as accurate as possible. By addressing the issue of motion artifacts, the precision 
and reliability of this quantitative analysis will be enhanced.  

Main Hypothesis:  

1. The developed Image-Derived Input Function can provide quantitatively 
accurate representations of tracer concentrations over time for kinetic 
modeling, eliminating the need for invasive arterial blood sampling.  
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Between 2015 and 2020, the University Department of Radiology and Nuclear 
Medicine at the Medical University of Vienna, situated within the General Hospital 
of the City of Vienna, carried out a total of 334 dynamic 18F-FET-PET 
examinations for suspected brain tumors. Of these, 176 examinations were carried 
out on the Biograph TPTV 64 PET-CT scanner, while the remaining 158 
examinations were conducted using the Biograph mMR PET/MRI device, both 
provided by Siemens Healthcare GmbH, Erlangen, Germany. Out of the 334 
examinations conducted only 8 were used for the final study group. The primary 
criteria for exclusion is explained in the following chapter. The retrospective data 
collection and exploratory data evaluation was approved by the ethics committee 
of the Medical University of Vienna, under code EK 1075/2020.  

3.1 Patient data  
The study group comprises datasets from 3 female patients and 4 male patients, 
ranging in age from 22 to 63 years, diagnosed with brain tumors such as 
astrocytoma, oligodendroglioma and glioblastoma, as listed in table 1.  

Number Gender Age Diagnosis 

007 Female 22 Astrocytoma  

009 Female 47 Astrocytoma 

035 Male 63 Astrocytoma 

052 Male 40 Oligodendroglioma 

069 Female 41 Glioblastoma 

074 Male 49 Glioblastoma 

090 Male 29 Glioblastoma 

Table 1: characteristics of the study group with assignment number, age at examination, 
sex and diagnosis (Poglitsch)  
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3.2 Exclusion criteria 
To ensure a consistent study group, Poglitsch excluded certain examinations. 
Examinations conducted on the PET-CT were excluded due to the device's inability 
to save raw examination data, which is crucial for refined reconstructions needed 
in kinetic modeling. Out of the remaining 158 PET/MRI examinations, 13 datasets 
were excluded since the subjects were under 18 years old on the day of imaging.  

The remaining 145 examinations were roughly categorized based on preliminary 
diagnoses, resulting in 45 suspected initial brain tumor diagnoses, 82 recurrences, 
and 17 metastases from other tumors.  

To avoid pre-treatments, only the 45 examinations with suspected initial diagnoses 
were considered. Out of these, 17 displayed no significant changes in 18F-FET 
uptake in the tumor. 14 did not have a histological examination, with five showing 
notable FET retention. From the remaining 23 examinations, 15 datasets were 
either incomplete or untraceable. In the final selection, datasets from 8 patients 
were considered. However, for the purpose of this research, only 7 of these 
datasets were included in the study group. One patient ́s dataset was excluded 
due to a late start of the examination, which resulted in missing the initial phase of 
tracer uptake a crucial component for accurate Time-Activity Curve analysis.  

3.3 PET MRI protocol  
Examinations were performed using a Biograph mMR PET/MRI system from 
Siemens Healthcare GmbH, Erlangen, Germany. The scanner integrates the PET 
detector within the MRI setup, specifically between the gradient coils and the 
radiofrequency excitation coils. It consists out of 8 rings with 56 detector blocks, 
each block contains 8x8 LSO crystals (4x4x20 mm), coupled to a 3x3 grid of water-
cooled APDs. This configuration results in a total of 4032 channels and a voxel 
dimension of 172x172x127 with a voxel size of 2x2x2 mm^3 [7]. 

The PET scanning protocol is 40-minute long, initiated by the intravenous 
administration of approximately 2.8 MBq of 18F-FET per kg of body weight. For 
this study, the acquired data was reconstructed into 31 sequential time windows 
(12x5s + 4x15s + 8x1min + 5x4min + 2x5min) using a DIXON-based attenuation 
correction [7]. 

The PET/MRI examination was scanned simultaneously and consisted out of 
various sequences. For this study, the T1 sequences after the administration of 
contrast agent were used.  
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3.4 Data processing 

3.4.1 Coding language 

In Poglitsch dissertation, he used the Python programming language. His choice 
was influenced by Python being open-source and supported by a big community. 
Regularly updated and refined, Python offers a number of freely accessible 
libraries. Despite being a high-level language, Python offers efficient performance 
and includes numerous libraries tailored for image processing. A minor 
disadvantage is that the documentation of some libraries is not accurate. Yet, the 
flexibility of Python, made it the preferred choice. This rationale informed the 
decision to use Python for implementing the quantitative accurate IDIF. Sundar 
created an image-derived input function for his dissertation using MATLAB [7], [42], 
and the structure of his function served as a reference for generating a similar 
function in Python. The next chapter describes the used libraries and developed 
function that were needed to generate a quantitative accurate IDIF.  

3.4.2 Libraries 

The Program was developed using standard Python libraires, each serving a 
specific purpose to enhance its functionality. These libraries include standard 
Python libraries, well-established open-source libraries, as well as specialized 
ones tailored for scientific publications and software frameworks. 

Ø os: This library played a crucial role in accessing specific file locations, 
ensuring seamless file operations within the program. 

Ø gc: For the program the 'gc' library was used, which allowed for the release 
of unused memory space, optimizing performance. 

Ø argparse: Command-line interaction was facilitated by the 'argparse' 
library, which enabled the creation of user-friendly command-line inputs. 

Ø time: To incorporate time-related functionalities, the program accessed the 
'time' library, allowing it to interact with and utilize the current time as 
needed. 

Ø multiprocessing: The program used the power of process-based parallel 
computing through the 'multiprocessing' library, enabling efficient 
multitasking. 

Ø numpy: For effective manipulation of matrices and arrays, the 'numpy' 
library was employed, simplifying complex numerical operations. 

Ø scipy: Extensive scientific programming capabilities were realized with the 
inclusion of the 'scipy' library, offering a wide range of scientific and 
technical computing functions. 
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Ø matplotlib: A key component for creating graphical representations, 
'matplotlib' enabled the generation of static, interactive, and animated 
visualizations within the program. 

Ø SimpleITK: As the Python adaptation of the 'Insight Segmentation and 
Registration Toolkit' (ITK), 'SimpleITK' played a pivotal role in advanced 
image processing tasks within the program.  

Ø lmfit: For addressing non-linear optimization problems, 'lmfit' was 
incorporated as a versatile Python software solution. 

Ø ray: Facilitating efficient distribution of large, parallelizable tasks across 
multiple processors, 'ray' served as a valuable addition to the program's 
capabilities. 

Ø nibabel: Handling medical imaging data was made seamless with the 
nibabel: library, specializing in reading, and writing nifti files, a common 
format in the field. 

3.4.3 Program 

For this thesis two advanced techniques were adapted a motion correction and a 
partial volume correction which include spill in and spill out corrections.   

The objective of motion correction in PET imaging is to account for any patient 
movement during the scan, ensuring that motion between frames is corrected. This 
guarantees that the Regions of Interest (ROIs) align accurately throughout the 
entire PET dataset. The integrated motion correction processes each frame of the 
PET scan comparing it to a reference frame. 

Each frame is aligned to match the reference frame. The program calculates how 
much each frame needs to be shifted (translated) and rotated to match the 
reference frame. This calculation involves determining the best combination of 
movements (up/down, left/right, forward/backward) and rotations (around the x, y, 
and z axes) that make the current frame align closely with the reference frame.  

Once all frames are aligned with the reference frame, motion artifacts in between 
frames are minimized.   

The purpose of the PVC is to correct for the spreading (spillover) of the signal from 
small structures, like the carotid arteries in the brain. This spreading can make 
these structures look larger than they are and can mix their signal with surrounding 
tissue.  
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The PVC code addresses two main issues - spill-out (where the signal from a 
structure seems to leak into surrounding areas) and spill-in (where the signal from 
surrounding areas seems to leak into the structure).  

It applies mathematical filters to estimate how much signal has spilled in or out and 
thereby adjusts the signal for the PET data. During each iteration, the PVC checks 
how much the corrected data has changed from the previous data. Once the 
changes become small enough, it stops because further corrections won't 
significantly improve the image. The outcome of PVC is a more accurate 
representation of signal in the scanned region.  

The following two chapters describe in detail how the motion correction and partial 
volume correction work.  

3.4.4 Motion Correction code  

The goal of implementing a motion correction in this thesis was to minimize the 
impact of patient movement during a 40 min. long brain FET PET/MRI scan. Brain 
imaging, especially in a neurological or oncological context, often requires high 
precision due to the small size and close proximity to the structure of interest.  

This thesis specifically addresses head movements, opting for rigid registration as 
the method of choice. The rigid registration can compensate for frequent head 
movements such as slight tilts or rotations that often occur during longer scanning 
sessions. The choice of rigid registration was also influenced by its computational 
efficiency and speed, which are well compatible with the time-critical requirements 
of clinical workflows. 

The motion correction is set up as a “software pipeline” which makes it easy to 
update and use. The individual components of this program part are shown in 
Figure 5 and are described in detail in the next section.  

 

 

 

 

 

 

 

 

 
Figure 5: Motion correction pipeline 
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The motion correction pipeline for this thesis is designed to address movements 
that occurred between each frame during the scan. It consists out of three main 
functions. The primary function, “rigid_registration(fixed, moving)”, aligns a 
“moving” image to a “fixed” image using rigid body transformation, which involves 
translation and rotation. Within this function, a nested “cost_function” calculates 
the cost for a given set of transformation parameters. This calculation is performed 
using an affine transformation that applies translations (dx, dy, dz) and rotations 
(theta_x, theta_y, theta_z) to the moving image. The cost is determined as the 
negative cross-correlation between the fixed and the transformed moving image, 
with the objective being to find parameters that minimize this cost, thereby 
optimizing the alignment between the two images. To achieve this optimization, 
Powell's method (algorithm for optimizing mathematical functions) [89] is employed 
to find the transformation parameters that minimize the cost, striking a balance 
between computational efficiency and precision in alignment. 

The subsequent function in the motion correction pipeline is titled 
“apply_transformation(image, params)”. This function is instrumental in 
implementing the transformation parameters previously computed. It initiates by 
constructing individual rotation matrices corresponding to the rotation parameters 
(theta_x, theta_y, theta_z) for each of the three axes. These matrices are then 
combined to form a comprehensive rotation matrix. Next, the affine transformation 
process is engaged, using the rotation matrix in combination with the translation 
parameters (dx, dy, dz). This integrated approach enables the precise alignment 
of frames, ensuring the accuracy and reliability of the motion correction process. 

The central component of the motion correction pipeline is the 
"motion_correction_4d(data_4d, affine, output_path)" function. It begins by 
determining the total number of frames within the 4D PET data. In the next step 
the reference frame is selected. In this study, the reference frame for alignment is 
a frame from the first few minutes of the scan where the whole brain is adequately 
visible. This approach minimizes the risk of misalignment due to patient motion at 
the very beginning of the scan and it avoids the initial period immediately after 
tracer injection where registration might fail due to lack of signal in the beginning. 
Therefor the frames leading up to the reference frame were not registered to it. 
Further, the selection of the reference frame is based on visual inspection of the 
PET data to identify the first frame where the entire brain is visible. For all PET 
data sets in this thesis the reference frame was chosen individually. This is crucial 
for effective image registration and ensures a comprehensive coverage of the 
brain.  
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Upon establishing the reference frame, the function initializes a new data array to 
store the motion-corrected frames. This array mirrors the dimensions of the input 
data, ensuring consistency in data handling. The core of the function lies in the 
iterative processing of each frame within the PET dataset. For every frame, the 
"rigid_registration" function is called to calculate the necessary rigid body 
transformation, encompassing both translation and rotation, to align the current 
frame with the reference frame effectively. 

The computed transformation parameters are then applied to the current frame 
through the "apply_transformation" function. This crucial step adjusts each frame 
to align precisely with the reference frame, thereby compensating for any patient 
motion during the scan. The result is a set of motion-corrected frames which are 
essential for reliable PET analysis. By correcting for motion between different 
frames, this process ensures that the carotid mask aligns consistently across the 
entire scan, effectively minimizing discrepancies caused by patient movement and 
enhancing the precision of the analysis. 

Following the motion correction, it is essential to register the motion corrected PET 
data to the MRI scan. This registration ensures that anatomical structures are 
accurately aligned to the PET data.  

The following image 6 shows how the alignment of the MRI, PET and carotid mask 
was validated.  

 
Figure 6: alignment of MRI, PET and carotid mask 
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3.4.5 Input function code  

For an accurate extraction of the IDIF a prior PVC is required to ensure precision 
in tracer concentration measurements. The goal of implementing a partial volume 
correction is to reduce the inaccuracies caused by the limited spatial resolution of 
the PET/MRI scanner which lead to the partial volume effect. This effect causes 
the signal of the tracer to appear “smeared”, with activity spilling from the region of 
interest (ROI) into adjacent areas and vice versa. Specifically, spill-in occurs when 
the signal from the trace of the surrounding tissues leaks into the ROI, which 
wrongly increases the tracer signal inside the ROI. Spill-out occurs when the signal 
of the tracer within the ROI leaks into adjacent areas, resulting in a lower tracer 
signal within the target area. Implementing a PVC significantly improves the 
accuracy and reliability of quantitative image analysis.  

Sundar et al. established a methodology for spillover correction specifically tailored 
to the tracer FDG, aimed to achieve a quantitative IDIF. From this approach, the 
spillover correction for this thesis was adapted and refined to suit the 
characteristics of the FET tracer. 

The partial volume correction is set up as a “software pipeline”. The individual 
components of this program part are shown in Figure 7 and are described in detail 
in the next section.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7: Partial volume correction pipeline 
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The partial volume correction pipeline consists out of seven functions. Each of 
these functions plays a specific role in accurately processing and analyzing the 
data. In the following section first each function will be explained and afterwards 
how the whole program works.  

The “calculate_psfSigma” function is a fundamental component in the partial 
volume correction process, specifically designed to calculate the standard 
deviation (σ), or “psfSigma”, for a Gaussian Point Spread Function (PSF). This 
calculation is essential for accurately modeling the spread of the tracer in the PET 
imaging process. 

The process begins with the extraction of voxel dimensions from the input image, 
identified as “xDim”, “yDim”, and “zDim”, using the “GetSpacing()” method. These 
dimensions represent the physical size of each voxel in the PET dataset across 
the x, y, and z axes. This information is crucial for understanding the spatial 
resolution of the PET image. 

To accommodate variations in the Full Width at Half Maximum (FWHM) input, the 
function assesses whether “psfFWHM” is provided as a single value (scalar) or as 
multiple values (vector). In the case of a scalar, isotropic filtering is assumed, 
indicating uniform blurring across all dimensions. The scalar is then replicated 
across all three dimensions to create a uniform array. However, if “psfFWHM” is 
already a vector, it is directly converted into a numpy array for subsequent 
processing. 

Finally, the function calculates “psfSigma” from the “psfFWHM” values. This is 
achieved using the formula “psfSigma = psfFWHM / np.sqrt(8 * np.log(2))”, which 
translates the FWHM into the standard deviation of the Gaussian function.  

The function concludes by returning the calculated “psfSigma”, which is now 
primed for use in Gaussian filtering operations within the partial volume correction 
process. This value of “psfSigma” plays an important role in the accurate simulation 
of the tracer's signal spread.  

“apply_psf_to_mask” function models the PSF by applying a Gaussian filter to the 
carotid mask. It simulates how the PSF would cause the signal of the radioactive 
trace to spread out of the ROI and into the neighboring voxels. The output of this 
function is the “spill_out_zone”, which is a data set that shows potential spill-out 
areas, reflecting how the signal from withing the carotid mask blurs into 
surrounding tissue. This zone serves as the basis for adjusting the PET data to 
compensate for spill-out effect.  
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Another mask is created by using binary dilation to identify the immediate 
neighboring voxels around the carotid mask. A neighbor kernel which is a 6x6x6 
cube around the ROI is created. The new mask specifically excludes the areas 
within the carotid mask, thereby focusing on the neighboring voxels where spill-in 
typically occurs. This approach ensures that corrections are accurately targeted to 
the areas most affected by spill-in artifacts. 

The “create_background_mantel” function uses the neighboring kernel mask to 
create the background mantel. It addresses this by dilating the mask 10 mm) to 
capture a broader area that might be affected by spill-in, thus creating a 
background mantel.  

After creating the background mantel, which includes potential spill-in regions, the 
function “segment_background_mantel” refines the area to focus corrections more 
precisely. It applies Otsu´s thresholding method to the “background_mantel”. 
Regions with significant signal from tracer activity above a calculated threshold are 
segmented out and provide a targeted zone for applying spill-in corrections. This 
ensures that corrections are not uniformly applied across the entire mantel, which 
might include regions without significant tracer spill-in, thereby avoiding over-
correcting areas.  

The main and most important function is the “spill_correction_volume”, it applies 
iterative corrections to address spill-out and spill-in effects in PET data. It uses a 
multi-step approach within a loop to refine the PET data iteratively, ensuring each 
step contributes toward an accurate representation of the tracer distribution.  

It starts by duplicating the original PET data to avoid altering the original dataset. 
In the next step the function enters an iterative loop, designed to refine the 
correction process up to a maximum of 10 iterations (“numiters”), or until the 
changes between iterations fall below a certain threshold (“epsilon”). After each 
iteration, the function compares the newly corrected PET data (“corrected_pet”) 
with the data from the previous iteration (“PET_prev”). If the relative change is less 
than “epsilon” it indicates that further iterations are unlikely to significantly refine 
the data and the loop terminates.  

The last function is the “extract_tac” function. It plays an important role in the 
processing of PET data, specifically designed to extract the Time-Activity Curve 
(TAC) from a dynamic PET dataset. The primary purpose of this function is to 
calculate the average tracer concentration for each time point within the ROI, in 
this case, the carotid region. This is achieved by focusing on the area delineated 
by the “carotid_mask”, which is a binary mask where voxels within the carotid ROI 
are marked as true (1) and others as false (0). 
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The function initiates its operation by identifying the indices within the PET dataset 
that correspond to the carotid region, as indicated by the “carotid_mask”.  

For the 4D PET data, which includes both spatial and temporal dimensions, the 
function first establishes the number of time frames present in the dataset. It then 
initializes a zero-filled array “tac”. Next the function iterates over each time frame, 
calculating the mean tracer concentration within the carotid region for that specific 
time frame. This calculated mean value is stored in the “tac”. The function 
concludes by returning the tac array which encapsulates the average tracer activity 
within the carotid region across all time frames.  

 

 
Figure 8: masks: a) shows a part of the carotis, b) shows the carotis after tracer injection, 
c) shows the spill-out area, d) shows the spill-out zone which is depended of the PSF 
(FWHM 6mm) and the background mantel of 10 mm around the spill-out zone. 

The whole program works as follows:  

The program starts by loading the PET data and a predefined carotid mask (ROI). 
The carotid mask is used to simulate how the signal of the tracer might have spread 
outside the ROI due to the PET scanner´s partial volume effects.  

Spill-Out Zone: First the carotid mask is used to create a spill out zone, indicating 
potential areas where the signal appears to have spilled out of the ROI.  

Neighboring kernel mask: To address the spill-in correction a neighboring kernel 
mask is created; this mask identifies the immediate neighbors of the ROI. This 
mask is further processed by dilating it to create a background mantel to include a 
broader area around the ROI. The background mantel helps to ensure that spill-in 
corrections are not too narrowly focused.  
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Mantel segmentation: In the next step the background mantel is segmented by 
Otsu´s method. It isolates areas that have a signal above a certain threshold to 
ensures that corrections are not uniformly applied across the entire mantel.   

Iterative correction: During each iteration of the correction process a gaussian 
filter models the spread of the tracer signal to estimate both spill-out and spill-in 
effects. Corrections are iteratively applied based on the segmented mantel for spill-
in and the spill_out_zone mask for spill-out. This process continues until the 
changes between iterations are minimal.  

End of the pipeline: In the last steps the estimated spill-out is added to the PET 
data to compensate for underestimation, while the estimated spill-in effect is 
subtracted to correct for overestimation. This approach ensures that both spill-out 
and spill-in effects are corrected.  

3.4.6 Statistical methods  

Medical imaging plays a crucial role in healthcare, providing clinicians and 
researchers with insights into the physiological processes within the human body. 
In PET/MRI imaging, challenges like partial volume effects (PVE) and motion 
artifacts can significantly affect image quality and quantitative accuracy.  

To address these challenges, this master's thesis focuses on the implementation 
and adaption of a robust motion correction technique, alongside spill-in and spill-
out corrections, to obtain an accurate quantitative IDIF. The efficacy of these 
corrections was assessed using two parameters (AUC and Peak Activity) and the 
paired t-test for statistical evaluations.  

Ø Area Under Curve (AUC): 
AUC provides a comprehensive measure of the tracer's concentration over 
time within the region of interest. It's particularly useful for comparing the 
overall tracer uptake before and after applying corrections. 

Ø Peak Activity: 
This metric indicates the maximum tracer concentration observed in the 
region of interest. It's crucial for assessing the effectiveness of correction 
techniques.  

Ø Paired t-test:  
Since the paired t-test is specifically designed to compare two related 
groups it was used for this master´s thesis. Therefore, two sets of data are 
given – IDIF before and after correction. By comparing pre- and post-
correction images within the same patients it can be determine whether the 
corrections have statistically significant changes. 
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The process of extracting the values, statistics and generating Time-Activity Curve 
graphs from PET data involved several steps, using the capabilities of Python's 
analytical and visualization libraries. Graphical comparisons of the uncorrected 
and corrected TACs for the same patient data were crafted using 
“matplotlib.pyplot”. These plots display time in seconds on the x-axis against the 
average tracer concentration on the y-axis, representing the differences between 
the two datasets. 

Key quantitative insights were obtained by calculating the Peak Activity of each 
dataset, identified as the maximum value within the TAC (np.max). This approach 
provided a clear understanding of the highest tracer concentrations observed in 
both the uncorrected and corrected datasets. 

Furthermore, the AUC was quantified using the trapezoidal rule (np.trapz), offering 
a comprehensive measure of the total tracer concentration over time.  

To statistically evaluate the differences between the uncorrected and corrected 
TAC data, a paired t-test (ttest_rel) was performed. The resulting t-statistic and p-
value were calculated and reported, providing a robust statistical foundation to 
assess the significance of the changes observed post-correction. Further the 
median and Interquartile Range (IQR) for the Area Under the Curve (AUC) values 
were calculated.  

By following this structured approach, the thesis comprehensively analyzes the 
PET data, providing both a visual and statistical comparison of the uncorrected 
and corrected datasets. This methodological process ensures that the conclusions 
drawn are supported by both graphical trends and statistical analysis. 

Since a ground truth, such as arterial blood sampling, is missing the effectiveness 
and accuracy of the PVC implemented in this thesis were validate through a 
comparative analysis with existing literature. This validation involved comparing 
the ratios of Area Under the Curve and peak activity concentrations with 
corresponding values found in literature. This comparative approach helps to 
ensure that the PVC methods applied are consistent with established results.  
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4 Results 

The main result of this thesis was the implementation of a motion correction and 
quantitative accurate IDIF for automatic kinetic modeling of 18F-FET-PET/MRI 
brain scans to enable improved non-invasive diagnosis for glioma.  

To evaluate the effectiveness of the motion corrected, a qualitative assessment 
was performed through visual inspection of the corrected PET data. The 
uncorrected PET data was visually compared against the corrected PET data. This 
comparison revealed that minor head tilts, initially present in the scans, were 
effectively corrected through the motion correction. Overall, the PET data showed 
minimal signs of patient movement, indicating a high level of stability throughout 
the scanning sessions.  

Following the motion correction, the partial volume correction was implemented to 
address the problem of tissue spillover effects, which are common in PET imaging. 
These effects occur due to the limited spatial resolution of the scanner, which can 
blur the signal of the tracer. The generated PVC adjusts the signal of the PET data 
representing an accurate signal of the tracer concentration. By applying PVC the 
signal within small structures such as the carotid artery was higher compared to 
the signal before applying PVC.  

4.1.1 Data analysis   

In this thesis, each dataset underwent motion correction and partial volume 
correction, from which the Image-Derived Input Functions (IDIFs) were derived. To 
show the differences between the uncorrected and corrected data, the IDIFs were 
graphically represented against time, and key values such as the Area Under the 
Curve, Peak Activity, and a statistical paired t-tests were analyzed. 

To validate the effectiveness of the correction methods the corrected IDIF was first 
compared with the uncorrected IDIF. This comparison helps illustrate the 
quantitative impact of the PVC method. 

In the following section first the graphs, AUC and peak activity for each patient will 
be presented and afterwards the comparison with literature.  
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Figure 9: TAC curves 

The graphs above present a comparison of the Time-Activity Curves (TAC) for 
Uncorrected and Corrected PET data over a series of time points for each dataset 
used in this thesis. The y-axis shows the detected activity in kBq/ml and the x-axis 
shows the time in seconds. A statistical analysis of each dataset revealed 
significant differences between the uncorrected and corrected Time-Activity 
Curves. In the initial phase each graph shows that the uncorrected and corrected 
curves show minimal activity, indicating low tracer uptake in the initial phase. A 
significant rise in tracer concentration is observed in all curves after the first minute. 
The corrected data shows a much higher increase compared to the uncorrected 
data. 

The AUC values were compared between the uncorrected and corrected datasets 
to evaluate the impact of partial volume correction (PVC). The results show a 
median percentage increase of approximately 90-110% in AUC values following 
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correction. To account for the high variability in AUC values and reduce the impact 
of outliers, a log transformation was applied. The interquartile range (IQR) of the 
log-transformed AUC values was 1,60.  

A paired t-test on the log-transformed AUC values was conducted to determine if 
there was a statistically significant difference in the values between the 
uncorrected and corrected data. The results revealed a significant difference 
between the datasets (p = 0.0238). The peak activity was assessed too and 
showed an increase in all datasets after correction, indicating that the correction 
method consistently enhances the measured peak activity. The percentage 
increase in peak activity varies significantly among subjects, ranging from 32.59% 
(FET074) to 134.85% (FET035). This suggests that the correction method has 
different effects on different subjects, possibly due to individual differences or 
varying conditions during measurements. The median increase is 52.69%.  

 

 

Figure 10: Box Plot peak activity 

The box Plot in figure 10 shows the peak activity values. The median peak activity 
value (represented by the line inside the box) for the corrected data is significantly 
higher than that of the uncorrected data. This indicates that, on average, the 
correction process increases the peak activity values. 

The interquartile range (IQR), represented by the height of the box, is larger for the 
corrected data compared to the uncorrected data. This suggests that there is more 
variability in the corrected peak activity values. 



4 Results  

47 

The whiskers, which represent the range of the data excluding outliers, are also 
longer for the corrected data, indicating a wider range of peak activity values after 
correction. There are notable outliers in both the uncorrected and corrected data. 
Specifically, there is one high outlier in each group, indicating extreme peak activity 
values that deviate significantly from the rest of the data. 

 
Figure 11: Box Plot log AUC 

The box plot shows that the log-transformed AUC values are generally higher after 
correction. This graph shows that the partial volume correction (PVC) has a 
significant impact on AUC values and therefore on the IDIF. 

The height of each box represents the interquartile range (IQR), which is the range 
between the 25th and 75th percentiles. The IQR for the corrected AUC values is 
larger than the uncorrected values, indicating more variability in the corrected data. 

The lines extending from the top and bottom of each box show the range of the 
data, excluding outliers. The correction appears effective in increasing AUC 
values, potentially enhancing the sensitivity or accuracy of the measurements.  

The findings were compared to those reported in literature. Previous studies by 
Sundar et al. [42], [90]and Sari et al. [90] demonstrated significant improvements 
in IDIF accuracy and AUC measurements following PVC.  

In Sundar´s. research paper [42]. the authors developed a method to non-
invasively estimate the arterial input function (AIF) using an image-derived input 
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function from integrated PET/MRI data. Their approach was validated against the 
invasively measured AIF, assessing discrepancies in the area-under-the-curve 
(AUC) measurements between the AIF and IDIF, which demonstrated a high 
degree of accuracy and consistency, with test–retest variability and absolute 
percentage differences between cerebral metabolic rates of glucose (CMRGlc) 
measured via AIF and IDIF [42].  

Sundar et al. [42]. reported median absolute differences within ±5% when 
comparing the IDIF after PVC to the AIF, demonstrating the accuracy of PVC in 
their study. The increase in AUC values before and after corrections were 
compared with the results reported by Sundar et al. They observed an 80% 
increase in AUC values following partial volume corrections. In this thesis, the AUC 
values increased by approximately 90-110%% after applying PVC. This shows that 
the findings increased like in Sundar et al. paper. Although direct numerical 
comparisons are challenging due to differing methodologies, the overall trends 
highlight the efficacy of PVC.  

Sari´s research paper  [90] addresses a non-invasive alternative to AIF, it 
introduces a practical method for extracting an image-derived input function (IDIF) 
by segmenting the carotid arteries from MR images, thus avoiding the challenges 
associated with blood sampling and overcoming partial volume effects. A 
simulation study confirmed the efficacy of the proposed partial volume correction 
(PVC) technique, with results showing recovery of at least 92% of the true intensity 
post-correction  [90]. 

Sari et al. [90]  reported a significant increase in AUC values post-PVC, with a peak 
increase of 95% on average. This improvement is consistent with the observed 
peak increase of 90-110% in this thesis.  
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5 Discussion 

The primary objective of this thesis was to refine a pre-existing program designed 
for pharmacokinetic modeling of 18F-FET-PET data. This refinement involved 
integrating motion correction to account for patient movement and enhancing the 
accuracy of IDIF through partial volume correction, which includes adjustments for 
both spill-in and spill-out effects. 

The main result of this work is the implementation of the motion correction and 
PVC for automatic kinetic modeling of 18F-FET-PET/MRI brain scans to enable 
improved non-invasive diagnosis of gliomas. The source code of the two pipelines 
can be found in Appendix 1. 

Motion Correction 

The accuracy of 18F-FET-PET/MRI brain scans can be significantly compromised 
by patient movement during the scanning process. Even minor head movements, 
such as tilts or rotations, can introduce substantial artifacts that affect the reliability 
of the PET data. This thesis implemented a motion correction technique to correct 
motion in-between frames.  

For this thesis a rigid registration method was chosen to correct head movements 
during scanning. This method aligns images based on translations and rotations, 
ensuring that the region of interest remains correctly positioned across all frames. 
The choice of rigid registration was influenced by its computational efficiency and 
speed, making it well-suited for clinical environments where quick processing is 
essential [46], [47], [91]. 

To evaluate the effectiveness of the motion correction, a qualitative assessment 
was performed through visual inspection of the corrected PET data. The 
uncorrected and corrected PET images were compared side-by-side, focusing on 
areas prone to movement artifacts. The assessment revealed that the motion 
correction successfully addressed minor head tilts and rotations, resulting in more 
stable and aligned images. This suggests that the motion correction method 
effectively minimized inter-frame patient motion artifacts, enhancing the overall 
quality of the PET data. 

Similar studies have highlighted the importance of motion correction in PET 
imaging. For instance, Miranda et al. [47] demonstrated that rigid registration could 
significantly improve image quality in brain PET scans by reducing motion artifacts 
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[47]. The findings of this thesis consistent with these reports, reinforcing the 
efficacy of rigid registration for motion correction. However, unlike Wang et al.[91], 
who used additional quantitative metrics to evaluate alignment accuracy, the 
assessment of the implemented motion correction was limited to visual inspection 
[91]. 

While visual inspection provided initial insights into the effectiveness of motion 
correction, it is subjective. Future work should incorporate quantitative assessment 
methods, such as image similarity metrics or statistical analyses, to objectively 
measure the improvements in image alignment. Additionally, exploring advanced 
machine learning-based approaches, could further enhance the accuracy and 
robustness of the correction process [91], [92]. 

In this thesis, the selection of the reference frame, which is crucial for accurate 
alignment of the frames in motion correction processes, was performed manually. 
Traditionally, this involves choosing a frame from the early stages of the scan 
where the entire brain is visible and motion artifacts are minimal. However, manual 
selection can be subjective and potentially inconsistent.  

To address the challenges of manually selecting the reference frame AI-driven 
techniques, particularly Generative Adversarial Networks (GANs) [92], could be 
used to automate and enhance the selection of optimal reference frames. An AI-
generated reference frames could provide stable reference points for the entire 
motion correction pipeline, thus eliminating the need for manual selection of a 
reference frame [93].  

Integrating AI-enhanced reference frames involves training a GAN to produce 
synthetic frames looking like late time frames from the early frames, which than 
can be used as reference frames [91], [92], [93], [94]. 

Employing AI to select reference frames to use for the motion correction pipeline 
has the potential to enhance clinical workflows by reducing the time and expertise 
needed to preprocess PET data. This advancement also paves the way for 
innovative research in automated image processing applicable to various imaging 
modalities. Future research might investigate the effectiveness of GAN-generated 
reference frames versus those selected manually, potentially establishing new 
standards for motion correction techniques in medical imaging [91], [92], [93], [94]. 

Partial volume correction 

Traditional methods for determining the input function in PET imaging rely on 
arterial blood sampling, which is invasive and often impractical due to patient 
discomfort and the need for specialists. To address these challenges this thesis 
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adapted an image-derived input function (IDIF) with partial volume correction 
(PVC). 

Partial volume effects (PVEs) arise from the limited spatial resolution of PET 
scanners, causing signal spillover between adjacent tissues and distorting tracer 
concentration measurements. This is particularly problematic in small structures 
like the carotid arteries. Correcting PVEs is crucial for reliability and accuracy of 
PET data [42]. 

The PVC approach implemented in this thesis adjusts for both spill-in and spill-out 
effects. By refining the signal within the PET data, PVC ensures that the measured 
tracer concentrations more accurately reflect their true distribution. This is 
particularly important for small structures where spillover effects are distinct. 

The effect of PVC was evaluated through various methods, including time activity 
curves, peak activity analysis, box plots, and comparison of AUC values before 
and after correction with literature. The log-transformed AUC values were 
significantly higher post-correction, indicating successful adjustment for PVEs. A 
paired t-test further supported these findings, revealing a statistically significant 
difference (p = 0.0238) between the uncorrected and corrected values. 

Using the FET007 patient as a case study, the following observations were made: 

• AUC increased around 90%. 
• Peak Activity increase around 50%.  

These results underscore the impact of the correction procedure on measured 
tracer concentrations. Both Peak Activity and AUC were notably higher in the 
corrected TAC, highlighting the tracer concentration measurements post-
correction.  

An interesting observation was made with patient FET090, who displayed an 
unusual IDIF distribution with two peaks, both enhanced by PVC. The most likely 
reason is that the bolus was given too slowly or was not administered as a single 
bolus. 

One primary challenge in this thesis was validating the accuracy and reliability of 
IDIF due to the absence of a direct ground truth, typically provided by invasive 
arterial blood sampling. By comparing AUC and Peak Activity metrics between the 
uncorrected and corrected IDIFs, the effectiveness of the corrections was 
assessed. This approach does not measure accuracy against a known standard 
directly, so the increase in AUC after correction was compared to similar studies. 
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Previous studies by Sundar et al. [42] and Sari et al. [90] have demonstrated the 
benefits of PVC in improving measurements accuracy. Consistent with these 
studies, this thesis found a substantial increase in AUC values following PVC. 
Sundar et al. reported an increase in AUC values post-correction of 80% [42], and 
Sari et al. reported an increase of 95% [90]. These findings align with those of this 
thesis, where the AUC value post-correction increased around 90-110%. The 
application of the PVC method in this thesis resulted in a substantial increase in 
the Area Under the Curve values, a little higher than reported in other studies. The 
increase in AUC values and peak activity values post-correction suggests that 
while the PVC method is effective in enhancing the sensitivity it may also be 
overcorrecting the values. Overcorrection can occur when the PVC method 
compensates too aggressively for partial volume effects, leading to artificially 
inflated AUC measurements.  

Significant enhancements in IDIF, AUC measurements, and peak activity were 
observed, underscoring the effectiveness of the PVC methods implemented. 

The peak activity values also show a notable increase after correction, with a 
median percentage increase of approximately 52.69%. However, there is 
considerable variability in the percentage increase of peak activity values across 
different patients. For instance, some patients exhibited increases as high as 
134.85%, while others had more modest increases of around 32.59%. 

This variability in peak activity enhancement suggests that individual patient 
characteristics play a significant role in the effectiveness of the correction method. 
Factors such as tissue composition, blood flow, and the extent of partial volume 
effects could contribute to these differences.  

Overall, the correction method shows promise in improving the quantification of 
tracer uptake, but a deeper understanding of patient-specific responses will be 
essential for maximizing its use. 

This research emphasizes the importance of spill-out and spill-in corrections in 
achieving more accurate IDIF values. As researchers continue to advance in this 
field, the insights gained here offer a foundation for enhanced patient care 
strategies and diagnostic methodologies. 

Numerous studies have successfully implemented IDIFs in PET imaging; however, 
applications specific to 18F-FET are relatively sparse. The unique properties of 
18F-FET, including its positron range and varying background activities, pose 
distinct challenges. Additionally, differences in algorithm convergence can impact 
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the accuracy of PVC and IDIF outcomes. Addressing these factors is crucial for 
optimizing IDIF implementation in 18F-FET PET studies. 

The integration of IDIF, combined with motion correction and PVC, supports the 
hypothesis that non-invasive techniques can provide quantitatively accurate tracer 
concentration representations over time for kinetic modeling, eliminating the need 
for invasive arterial blood sampling. The observed increases in AUC and Peak 
Activity in the corrected datasets, compared to the uncorrected ones and with 
literature, confirm the hypothesis: “The developed Image-Derived Input Function 
and motion correction can provide quantitatively accurate representations of tracer 
concentrations over time for kinetic modeling, eliminating the need for invasive 
arterial blood sampling.” This work demonstrates the need of IDIF in kinetic 
modeling and highlights the substantial improvements in PET data accuracy 
through the implemented correction techniques. 

Future studies might benefit from an expanded dataset as well as integrating data 
from both PET-CT and PET-MRI examinations. Exploring other correction 
methods or computational models may further refine the accuracy of IDIF values. 

This master's thesis encountered unexpected challenges which posed limitations. 
The study group size was shortened by the exclusion of a specific PET-data set, 
namely FET005. This particular dataset was rendered unusable due to a delay in 
initiating the dynamic 18F-FET PET MRI scan, causing the initial tracer uptake to 
be missed. This initial uptake is imperative for IDIF as it showcases the immediate 
kinetics of the tracer following injection. The very first moments post-injection are 
critical as they represent the tracer's maximum bloodstream concentration. This 
peak is crucial for ensuing accurate pharmacokinetic modeling because it is 
shedding light on the tracer's initial distribution volume. Furthermore, the early 
phase of uptake typically benefits from the finest temporal resolution in dynamic 
PET studies, spotlighting the brisk kinetics of tracer dispersion. In essence, the 
absence of this initial uptake phase means the IDIF is without comprehensive data 
about the tracer's full body dynamics, which could culminate in inaccurate 
interpretations or potentially flawed modeling results.  

One of the primary limitations of this study, alongside page constraints, was the 
limited time available for comprehensive testing and implementation. This time 
limitation particularly impacted the application of the motion correction and spillover 
correction techniques developed in this thesis. While these techniques were 
successfully integrated into Poglitsch's existing script, due to time constraints, only 
the initial part of the script could be executed. The complete processing of a single 
patient dataset using Poglitsch's script takes an extensive duration—approximately 
4-6 hours. This underscores the necessity for further research to thoroughly assess 
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the effectiveness of these enhancements in the context of the complete script and 
larger patient datasets. 

The scope of this master's thesis is inherently limited, given the constraints of time, 
resources, and the depth required for a project of this academic level. While a more 
extensive exploration could provide additional insights, it would surpass the 
boundaries set for a master's-level investigation. Recognizing this constraint is 
important as it is a limitation of the current study. Nonetheless, this thesis serves 
as a foundation and starting point for further investigation within a dissertation or 
more expansive research, where there may be fewer resource limitations.  

In the era of increasing integration of machine learning and artificial intelligence 
within the realm of medical imaging, the significance of having well-defined, 
consistent metrics like IDIF is vital. These metrics serve as structured data points 
that can be seamlessly incorporated into algorithms for a multitude of applications, 
including predictive modeling, treatment strategy development, and patient 
classification. Such standardized metrics become a cornerstone in the quest for 
precision and personalized healthcare solutions.  

In essence, the IDIF is crucial in 18F-FET PET/MRI glioma scans because it 
supports quantitative analysis, allows for dynamic imaging insights, aids in tumor 
characterization and monitoring, and provides a non-invasive and patient-friendly 
approach to obtaining essential data.  
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6 Conclusion  

Despite the limitations, this study has demonstrated that IDIFs used for FDG can 
potentially be used for tracers with different uptake patterns. The main goal of this 
thesis was to integrate motion correction and a quantitatively accurate partial 
volume correction technique to advance quantitative accuracy in kinetic modeling, 
specifically for image-derived input-function extraction. Hence, the time-sensitive 
activity concentration in the tissue adjacent to the carotid arteries was evaluated, 
leading to the development of a spillover correction that is both time and tissue 
dependent. 

The Hypothesis for this project was:  

“The developed Image-Derived Input Function and motion correction can provide 
quantitatively accurate representations of tracer concentrations over time for 
kinetic modeling, eliminating the need for invasive arterial blood sampling.” 

Based on the findings and analyses conducted throughout this project, the 
hypothesis was validated. The integrated motion correction and Image-Derived 
Input Function provide quantitatively accurate representations of tracer 
concentrations over time for kinetic modeling. This confirms the possibility of 
eliminating the need for invasive arterial blood sampling, aligning with the initial 
hypothesis. 

While the PVC method used in this thesis significantly improves the quantification 
of tracer uptake, the potential for overcorrection should be carefully considered.  

In conclusion, the results of this study suggest a promising future for the use of a 
quantitatively accurate IDIF. Arterial blood sampling, which is invasive and can be 
uncomfortable for the patient, would not be necessary anymore. Moreover, a 
quantitative approach ensures consistent and reproducible measurements, which 
is essential in clinical and research settings. 
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Appendix 

A. Code 
Motion correction 
# import packages 
import SimpleITK as sitk 
import numpy as np 
import nibabel as nib 
import os 
import argparse 
from scipy.ndimage import affine_transform 
from scipy.optimize import minimize 
 

def rigid_registration(fixed, moving): 
    """Perform rigid registration using optimization.""" 
    #funcitno uses fixed and moving image 
 
    def cost_function(params): 
        # Extract parameters ( how well the moving image alings with the 
fixed image based on translation and rotation ) 
        dx, dy, dz, theta_x, theta_y, theta_z = params 
 
        # Rotation matrices for x, y, z axes 
        Rx = np.array([[1, 0, 0], 
                       [0, np.cos(theta_x), -np.sin(theta_x)], 
                       [0, np.sin(theta_x), np.cos(theta_x)]]) 
        # creates matrix Rx for rotating the image around the x-axis by 
theta_x radians.  
        #The rotation affects the y and z components but leaves the x 
component unchanged. 
        Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)], 
                       [0, 1, 0], 
                       [-np.sin(theta_y), 0, np.cos(theta_y)]]) 
        #Ry matrix for rotating around the y-axis by theta_y radians.  
        #This rotation affects the x and z components while leaving the y 
component unchanged. 
        Rz = np.array([[np.cos(theta_z), -np.sin(theta_z), 0], 
                       [np.sin(theta_z), np.cos(theta_z), 0], 
                       [0, 0, 1]]) 
        #Rz matrix around the z-axis by theta_z radians.  
        #This affects the x and y components but not the z component. 
        R = np.dot(Rz, np.dot(Ry, Rx)) 
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        #Combined rotation matrix 
        #will apply all three rotations in sequence: first around the x-
axis, then the y-axis, and finally the z-axis 
        transformed = affine_transform(moving, R, offset=( 
            dx, dy, dz), order=1, mode='constant') 
        #This applies the combined rotation (R) and translation (dx, dy, 
dz) to the moving image.  
        #result  a version of the moving image that has been shifted and 
rotated. 
        # Cost is the negative cross-correlation 
        return -np.sum(fixed * transformed) 
        #returns negative of the sum of the element-wise multiplication 
of the fixed and transformed images. a measure of similarity;  
        # by minimizing this value, the algorithm maximizes the alignment 
between the two images. 
    initial_params = [0, 0, 0, 0, 0, 0] 
    # starting points for optimazation  
    result = minimize(cost_function, initial_params, method='Powell') 
    #optimization method (Powell's method)  is used to find the best set 
of parameters (rotations and translations)  
    #that minimize the cost function — that best align the moving image 
to the fixed one 
 
    return result.x 
    #returns optimal parameters  
 
def apply_transformation(image, params): 
    """Apply the rigid transformation to an image.""" 
    dx, dy, dz, theta_x, theta_y, theta_z = params 
    #unpacks transformation param.  
    #rotation matrices  
    Rx = np.array([[1, 0, 0], 
                   [0, np.cos(theta_x), -np.sin(theta_x)], 
                   [0, np.sin(theta_x), np.cos(theta_x)]]) 
    Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)], 
                   [0, 1, 0], 
                   [-np.sin(theta_y), 0, np.cos(theta_y)]]) 
    Rz = np.array([[np.cos(theta_z), -np.sin(theta_z), 0], 
                   [np.sin(theta_z), np.cos(theta_z), 0], 
                   [0, 0, 1]]) 
    R = np.dot(Rz, np.dot(Ry, Rx)) 
    #combines all three matrices into one that encapsulates the total 
rotation effect (first rotating around the X-axis, then the Y-axis, and 
finally the Z-axis) 
    return affine_transform(image, R, offset=(dx, dy, dz), order=1, 
mode='constant') 
  



 

    """ 
    affine_transform -> function from SciPy that applies the affine 
transformation to the image 
    image: The original image data thath will be transformed 
    R: The combined rotation matrix 
    offset: The translation amounts (dx, dy, dz) that shift the image in 
space 
    order=1: This specifies bilinear interpolation for resampling (which 
affects how the values between pixels are calculated during the 
transformation) 
    mode='constant': This sets how the function handles borders, it will 
fill with constant values (defaults to zero) outside the boundaries of 
the input 
    """ 
 
def motion_correction_4d(data_4d, affine, output_path, start_frame): 
    # Total number of frames  
    total_frames = data_4d.shape[3] 
    print(f"Total number of frames: {total_frames}") 
     
    # Set the reference frame from a specified time after the initial 
unstable period 
    reference_frame = data_4d[:, :, :, start_frame] 
 
    # Initialize a new array for the motion corrected data (empty array 
same size ad data_4d) 
    corrected_data = np.zeros_like(data_4d) 
 
    # Process each frame 
    for i in range(start_frame, total_frames): 
        frame = data_4d[:, :, :, i] 
        print(f"Processing frame {i+1} of {total_frames}") 
 
        if i == start_frame: 
            corrected_data[:, :, :, i] = frame 
        else: 
            params = rigid_registration(reference_frame, frame) 
            corrected_frame = apply_transformation(frame, params) 
            corrected_data[:, :, :, i] = corrected_frame 
 
    """ 
    loops through each frame  
    if  current frame is  middle frame it's copied directly into the 
corrected_data array without changes 
    all other frames rigid_registration function is called to find the 
optimal transformation parameters that align this frame to the reference 
frame  
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     apply_transformation is used to apply this calculated 
transformation, and the corrected frame is stored in corrected_data 
    """ 
 
    # Save the motion-corrected data as a new NIfTI file 
    corrected_nifti = nib.Nifti1Image(corrected_data, affine) 
    nib.save(corrected_nifti, output_path) 
 
    print("Motion correction process completed.") 
 

# Load the 4D NIfTI image 
print('Reading Nifti:') 
nifti_path = 
'/Volumes/SSD/Matthias/Matthias_FET_PatData/FET090/Result/FET090_1x1_leas
t_square_minustime_0_whole_PET.nii' 
 
# Load the NIfTI file 
data, affine = load_nifti_4d(nifti_path) 
print('NIfTI file loaded successfully.') 
 
# Define the start frame based on PET data 
start_frame = 10  # Example: start from the 10th frame 
# Perform motion correction 
print('MoCo starting') 
output_path = 
'/Volumes/SSD/Matthias/Matthias_FET_PatData/FET090/corrected_PET.nii' 
motion_correction_4d(data, affine, output_path, start_frame) 
 
print('MoCo finished') 
print("Motion correction completed and saved to:", output_path) 
 

# =========================== 
# Motion correction End 
# =========================== 
 

Partial Volume Correction: 

import numpy as np 
from scipy.ndimage import gaussian_filter, binary_dilation, 
generate_binary_structure 
from skimage.filters import threshold_otsu 
import nibabel as nib 
import SimpleITK as sitk 
import scipy as scp 
 



 

def calculate_psfSigma(VOXEL_SIZE, PSF_FWHM): 
    # Convert PSF_FWHM to an array if it is a scalar 
    if np.isscalar(PSF_FWHM): 
        PSF_FWHM = np.array([PSF_FWHM] * len(VOXEL_SIZE)) 
    else: 
        psfFWHM = np.array(PSF_FWHM) 
    psfFWHM /= np.array(VOXEL_SIZE) 
    # Calculate the PSF sigma 
    psfSigma = PSF_FWHM / np.sqrt(8 * np.log(2)) 
    return psfSigma.tolist() 
 
def apply_psf_to_mask(mask, psf_sigma): 
    # Apply Gaussian filter to mask to create spill out zone 
    spill_out_zone = gaussian_filter(mask.astype(float), sigma=psf_sigma) 
    return spill_out_zone 
 
def create_background_mantel(spill_in_zone, dilation_size_mm, 
VOXEL_SIZE): 
    # Convert dilation size to pixels 
    dilation_pixels = [int(dilation_size_mm / vs) for vs in VOXEL_SIZE] 
    # Create a structural element for binary dilation 
    struct_elem = generate_binary_structure(3, 1) 
    # Perform binary dilation on the spill in zone 
    dilated_zone = binary_dilation(spill_in_zone > 0.5, 
structure=struct_elem, iterations=max(dilation_pixels)) 
    # Create background mantel by subtracting spill in zone from dilated 
zone 
    background_mantel = dilated_zone & ~ (spill_in_zone > 0.5) 
    return background_mantel 
 
def segment_background_mantel(pet_volume, background_mantel): 
    # Get the activity in the background mantel 
    mantel_activity = pet_volume[background_mantel] 
    # Segment the background mantel using Otsu's threshold if activity is 
present 
    if np.any(mantel_activity): 
        otsu_thresh = threshold_otsu(mantel_activity) 
        segmented_mantel = (pet_volume > otsu_thresh) & background_mantel 
    else: 
        segmented_mantel = np.zeros_like(pet_volume, dtype=bool) 
    return segmented_mantel 
 
def spill_correction_volume(pet_data, carotid_mask_4d, VOXEL_SIZE, 
PSF_FWHM, num_iter=10, epsilon=1e-5): 
    # Calculate PSF sigma 
    psfSigma = calculate_psfSigma(VOXEL_SIZE, PSF_FWHM) 
    corrected_pet = pet_data.copy() 
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    # Define neighbor kernel for dilation 
    neighbor_kernel = np.ones((3, 3, 3), dtype=int) 
    neighbor_kernel[1, 1, 1] = 0 
 
    for iteration in range(num_iter): 
        print(f"Iteration {iteration + 1} of {num_iter}") 
        PET_prev = corrected_pet.copy() 
        for t in range(pet_data.shape[-1]): 
            # Apply PSF to mask 
            spill_out_zone = apply_psf_to_mask(carotid_mask_4d[..., t], 
psfSigma) 
            # Calculate spill out 
            spill_out = gaussian_filter(corrected_pet[..., t] * 
spill_out_zone, sigma=psfSigma) 
            # Create immediate neighbors and background mantel 
            immediate_neighbors = binary_dilation(carotid_mask_4d[..., 
t], structure=neighbor_kernel) & ~carotid_mask_4d[..., t] 
            background_mantel = 
create_background_mantel(immediate_neighbors, 10, VOXEL_SIZE) 
            segmented_mantel = segment_background_mantel(pet_data[..., 
t], background_mantel) 
            # Calculate spill in 
            spill_in = gaussian_filter(corrected_pet[..., t] * 
segmented_mantel, sigma=psfSigma) 
            # Correct PET data 
            corrected_pet[..., t] -= spill_out 
            corrected_pet[..., t] += spill_in 
        # Check for convergence 
        if np.linalg.norm(corrected_pet - PET_prev) / 
np.linalg.norm(PET_prev) < epsilon: 
            print(f"Convergence reached at iteration {iteration + 1}") 
            break 
    return corrected_pet 
 
def extract_tac(pet_data, mask): 
    # Get indices of the mask 
    mask_indices = np.where(mask) 
    if pet_data.ndim == 4: 
        num_time_frames = pet_data.shape[-1] 
        tac = np.zeros(num_time_frames) 
        # Calculate the mean activity in the mask for each time frame 
        for t in range(num_time_frames): 
            tac[t] = np.nanmean(pet_data[mask_indices[0], 
mask_indices[1], mask_indices[2], t]) 
    elif pet_data.ndim == 3: 
        tac = np.nanmean(pet_data[mask_indices]) 
    else: 



 

        raise ValueError("Unexpected number of dimensions in pet_data.") 
    return tac 
 
def apply_positron_range_correction(pet_data, positron_range_mm, 
voxel_size): 
    # Calculate the sigma in voxels 
    sigma_voxels = positron_range_mm / np.array(voxel_size) 
    # Apply Gaussian filter to correct positron range 
    corrected_data = gaussian_filter(pet_data, sigma=sigma_voxels) 
    return corrected_data 
 
# Load PET data 
pet_file = 
"/Volumes/SSD/Matthias/Matthias_FET_PatData/FET007/Result/FET007_1x1_leas
t_square_minustime_0_whole_PET.nii" 
carotid_mask_file = 
"/Volumes/SSD/Matthias/Matthias_FET_PatData/FET007/Result/FET007_1x1_leas
t_square_minustime_0_Carotis_registered.nii" 
VOXEL_SIZE = [2.08626, 2.08626, 2.08626] 
PSF_FWHM = [4.6, 5.0, 4.0] 
POSITRON_RANGE_MM = 2.0 
 
# Load PET data 
pet_img = nib.load(pet_file) 
pet_data = pet_img.get_fdata() 
print("PET data shape: ", pet_data.shape) 
 
# Load Carotid mask 
carotid_mask_img = nib.load(carotid_mask_file) 
carotid_mask_unshaped = carotid_mask_img.get_fdata().astype(np.int16) 
print("Shape of Carotid_mask before adding dimension:", 
carotid_mask_unshaped.shape) 
 
# Expand carotid mask dimensions to match PET data 
carotid_mask_4d = np.expand_dims(carotid_mask_unshaped, axis=-1) 
carotid_mask_4d = np.repeat(carotid_mask_4d, pet_data.shape[3], axis=-1) 
print("Shape of Carotid_mask with expand", carotid_mask_4d.shape) 
 
# Extract IDIF from uncorrected data 
print("Calculating IDIF from the uncorrected data") 
stat_filter = sitk.LabelStatisticsImageFilter() 
mean_vals = list() 
mean_vals.append(0.0) 
for t in range(pet_data.shape[-1]): 
    pet_slice = pet_data[..., t] 
    pet_slice_sitk = sitk.GetImageFromArray(pet_slice) 
    carotid_mask_sitk = sitk.GetImageFromArray(carotid_mask_unshaped) 
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    stat_filter.Execute(pet_slice_sitk, carotid_mask_sitk) 
    mean_v = stat_filter.GetMean(1) 
    mean_vals.append(mean_v) 
 
# Interpolate IDIF for uncorrected data 
time_frames = list(range(pet_data.shape[-1] + 1)) 
x_list = time_frames 
x_end = int(x_list[-1]) 
xnew = np.linspace(0, x_end, num=(int(x_end + 1)), endpoint=True) 
xnew = xnew.astype('int16') 
 
f1 = scp.interpolate.interp1d(x_list, mean_vals) 
i_new = f1(xnew) 
 
idif_uncorrected = np.array(i_new).astype('float32') 
 
# PVC with Positron Range Correction 
print("Starting with Positron Range Correction and PVC") 
positron_range_corrected_pet = np.zeros_like(pet_data) 
for t in range(pet_data.shape[-1]): 
    positron_range_corrected_pet[..., t] = 
apply_positron_range_correction(pet_data[..., t], POSITRON_RANGE_MM, 
VOXEL_SIZE) 
 
corrected_pet_data_prc = 
spill_correction_volume(positron_range_corrected_pet, carotid_mask_4d, 
VOXEL_SIZE, PSF_FWHM, num_iter=3, epsilon=1e-5) 
 
 


